满分5 > 高中数学试题 >

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-...

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设manfen5.com 满分网
(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为manfen5.com 满分网,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.
(1)先根据二次函数的顶点式设出函数g(x)的解析式,然后对其进行求导,根据g(x)的导函数的图象与直线y=2x平行求出a的值,进而可确定函数g(x)、f(x)的解析式,然后设出点P的坐标,根据两点间的距离公式表示出|PQ|,再由基本不等式表示其最小值即可. (2)先根据(1)的内容得到函数y=f(x)-kx的解析式,即(1-k)x2+2x+m=0,然后先对二次项的系数等于0进行讨论,再当二次项的系数不等于0时,即为二次方程时根据方程的判别式进行讨论即可得到答案. 【解析】 (1)依题可设g(x)=a(x+1)2+m-1(a≠0),则g'(x)=2a(x+1)=2ax+2a; 又g'(x)的图象与直线y=2x平行∴2a=2∴a=1 ∴g(x)=(x+1)2+m-1=x2+2x+m,, 设P(xo,yo),则= 当且仅当时,|PQ|2取得最小值,即|PQ|取得最小值 当m>0时,解得 当m<0时,解得 (2)由(x≠0),得(1-k)x2+2x+m=0(*) 当k=1时,方程(*)有一解,函数y=f(x)-kx有一零点; 当k≠1时,方程(*)有二解⇔△=4-4m(1-k)>0, 若m>0,, 函数y=f(x)-kx有两个零点,即; 若m<0,, 函数y=f(x)-kx有两个零点,即; 当k≠1时,方程(*)有一解⇔△=4-4m(1-k)=0,, 函数y=f(x)-kx有一零点 综上,当k=1时,函数y=f(x)-kx有一零点; 当(m>0),或(m<0)时, 函数y=f(x)-kx有两个零点; 当时,函数y=f(x)-kx有一零点.
复制答案
考点分析:
相关试题推荐
已知定义在R上的函数f(x)=ax3-2ax2+b(a>0)在区间[-2,1]上的最大值是5,最小值是-11.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若t∈[-1,1]时,f'(x)+tx≤0恒成立,求实数x的取值范围.
查看答案
某公司为了应对金融危机,决定适当进行裁员.已知这家公司现有职工2m人(60<m<500,且m为10的整数倍),每人每年可创利100千元.据测算,在经营条件不变的前提下,若裁员人数不超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利1千元;若裁员人数超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利2千元.为保证公司的正常运转,留岗的员工数不得少于现有员工人数的75%.为保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.问:为了获得最大的经济效益,该公司应裁员多少人?
查看答案
设函数y=f(x)(x∈R,且x≠0),对任意非零实数x1、x2满足f(x1+x2)=f(x1x2),
(1)求f(1)+f(-1)的值;  
(2)判断函数y=f(x)的奇偶性;
(3)已知y=f(x)在(0,+∞)上为增函数且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.
查看答案
已知不等式manfen5.com 满分网的解集为A,不等式x2-(2+a)x+2a<0的解集为B.
(1)求集合A及B;
(2)若A⊆B,求实数a的取值范围.
查看答案
若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.