满分5 > 高中数学试题 >

四边形ABCD和四边形A'B'C'D'分别是矩形和平行四边形,其中点的坐标分别为...

四边形ABCD和四边形A'B'C'D'分别是矩形和平行四边形,其中点的坐标分别为A(-1,2),B(3,2),C(3,-2),D(-1,-2),A'(-1,0),B'(3,8),C'(3,4),D'(-1,-4).求将四边形ABCD变成四边形A'B'C'D'的变换矩阵M.

manfen5.com 满分网
设出变换矩阵M,由题意列出变换矩阵,由矩阵的乘法的到关于k的方程,解出k,即可确定矩阵变换M 【解析】 该变换为切变变换,设矩阵M为, 则. ∴-k+2=0,解得k=2. 所以,M为.
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网的定义域为{x|x≠1},图象过原点,且manfen5.com 满分网
(1)试求函数f(x)的单调减区间;
(2)已知各项均为负数的数列{an}前n项和为Sn,满足manfen5.com 满分网,求证:manfen5.com 满分网
(3)设manfen5.com 满分网,是否存在m1,,n1,m2,n2∈N*,使得ln2011∈(g(m1,n1),g(m2,n2))?若存在,求出m1,,n1,m2,n2,证明结论;若不存在,说明理由.
查看答案
已知点A(-1,0)、B(1,0),△ABC的周长为2+2manfen5.com 满分网.记动点C的轨迹为曲线W.
(1)直接写出W的方程(不写过程);
(2)经过点(0,manfen5.com 满分网)且斜率为k的直线l与曲线W 有两个不同的交点P和Q,是否存在常数k,使得向量manfen5.com 满分网+manfen5.com 满分网与向量manfen5.com 满分网共线?如果存在,求出k的值;如果不存在,请说明理由.
(3)设W的左右焦点分别为F1、F2,点R在直线l:x-manfen5.com 满分网y+8=0上.当∠F1RF2取最大值时,求manfen5.com 满分网的值.
查看答案
已知△ABC的周长为6,manfen5.com 满分网依次为a,b,c,成等比数列.
(1)求证:manfen5.com 满分网
(2)求△ABC的面积S的最大值;
(3)求manfen5.com 满分网的取值范围.
查看答案
某民营企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1所示;B产品的利润与投资的算术平方根成正比,其关系如图2所示(利润与投资单位:万元).
manfen5.com 满分网
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
查看答案
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距离;   
(3)求三棱锥A1-AB1C的体积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.