满分5 > 高中数学试题 >

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈...

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=manfen5.com 满分网,求数列{bn}的前n项和T.
(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p,令n=1,解方程即可求得结果; (2)由2Sn=2an2+an-1,知2Sn-1=2an-12+an-1-1,(n≥2),所以(an-an-1-1)(an+an-1)=0,由此能求出数列{an}的通项公式. (3)根据求出数列{bn}的通项公式,利用错位相减法即可求得结果. 【解析】 (1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p ∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1; (2)2Sn=2an2+an-1,① 2Sn-1=2an-12+an-1-1,(n≥2),② ①-②即得(an-an-1-)(an+an-1)=0, 因为an+an-1≠0,所以an-an-1-=0, ∴ (3)2Sn=2an2+an-1=2×, ∴Sn=, ∴=n•2n Tn=1×21+2×22+…+n•2n③ 又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1 ④ ④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2 ∴Tn=(n-1)2n+1+2
复制答案
考点分析:
相关试题推荐
已知椭圆的中心在坐标原点O,长轴长为manfen5.com 满分网,离心率manfen5.com 满分网,过右焦点F的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)若以OP,OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.
查看答案
已知函数manfen5.com 满分网在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x,y)为manfen5.com 满分网图象上任意一点,直线l与manfen5.com 满分网的图象切于点P,求直线l的斜率k的取值范围.
查看答案
manfen5.com 满分网如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
查看答案
设集合P={x,1}Q={y,1,2},P⊆Q,其中x,y是先后随机投掷2枚正方体骰子出现的点数,(1)求x=y的概率(2)求点(x,y)正好落在区域manfen5.com 满分网上的概率.
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,manfen5.com 满分网),其部分图象如图所示.
(I)求f(x)的解析式;
(II)求函数manfen5.com 满分网在区间manfen5.com 满分网上的最大值及相应的x值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.