满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,)都在函数f(x)=x+...

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,manfen5.com 满分网)都在函数f(x)=x+manfen5.com 满分网的图象上.
(1)计算a1,a2,a3,并归纳出数列{an}的通项公式;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(3)设An为数列manfen5.com 满分网的前n项积,若不等式Anmanfen5.com 满分网<f(a)-manfen5.com 满分网对一切n∈N*都成立,求a的取值范围.
(1)由已知可得,即.分别令n=1,n=2,n=3,代入可求a1,a2,a3,进而猜想an (2)由an=2n可得数列{an}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故 b100是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.代入可求 (3)因为,,若成立 设,则只需即可利用g(n)的单调性可求其最大值 ,从而可求a的范围 【解析】 (1)因为点在函数的图象上, 故,所以. 令n=1,得,所以a1=2; 令n=2,得,所以a2=4; 令n=3,得,所以a3=6. 由此猜想:an=2n. (2)因为an=2n(n∈N*),所以数列{an}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故 b100是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68, 所以 b100=68+24×80=1988.又b5=22,所以b5+b100=2010 (3)因为,故, 所以. 又, 故对一切n∈N*都成立,就是对一切n∈N*都成立. 设,则只需即可. 由于=, 所以g(n+1)<g(n),故g(n)是单调递减,于是. 令,即 ,解得,或. 综上所述,使得所给不等式对一切n∈N*都成立的实数a的取值范围是.
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网
(1)当a=1时,求y=f(x)在[-4,-manfen5.com 满分网]上的最值;
(2)若a≥0,求f(x)的极值点.
查看答案
某工厂有216名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或3个H型装置.现将工人分成两组同时开始加工,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).
(1)写出g(x),h(x)的解析式;
(2)比较g(x)与h(x)的大小,并写出这216名工人完成总任务的时间f(x)的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?
查看答案
如图,已知椭圆C:manfen5.com 满分网的长轴AB长为4,离心率manfen5.com 满分网,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.
(1)求椭圆C的方程;
(2)证明Q点在以AB为直径的圆O上;
(3)试判断直线QN与圆O的位置关系.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
查看答案
已知manfen5.com 满分网
(1)当manfen5.com 满分网时,求函数manfen5.com 满分网的最小正周期;
(2)当manfen5.com 满分网manfen5.com 满分网,α-x,α+x都是锐角时,求cos2α的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.