设数列{a
n}的前n项和为S
n,对一切n∈N
*,点(n,
)都在函数f(x)=x+
的图象上.
(1)计算a
1,a
2,a
3,并归纳出数列{a
n}的通项公式;
(2)将数列{a
n}依次按1项、2项、3项、4项循环地分为(a
1),(a
2,a
3),(a
4,a
5,a
6),(a
7,a
8,a
9,a
10);(a
11),(a
12,a
13),(a
14,a
15,a
16),(a
17,a
18,a
19,a
20);(a
21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b
n},求b
5+b
100的值;
(3)设A
n为数列
的前n项积,若不等式A
n<f(a)-
对一切n∈N
*都成立,求a的取值范围.
考点分析:
相关试题推荐
函数
;
(1)当a=1时,求y=f(x)在[-4,-
]上的最值;
(2)若a≥0,求f(x)的极值点.
查看答案
某工厂有216名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或3个H型装置.现将工人分成两组同时开始加工,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).
(1)写出g(x),h(x)的解析式;
(2)比较g(x)与h(x)的大小,并写出这216名工人完成总任务的时间f(x)的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?
查看答案
如图,已知椭圆C:
的长轴AB长为4,离心率
,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.
(1)求椭圆C的方程;
(2)证明Q点在以AB为直径的圆O上;
(3)试判断直线QN与圆O的位置关系.
查看答案
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为V
F-ABCD,V
F-CBE,求V
F-ABCD:V
F-CBE.
查看答案
已知
(1)当
时,求函数
的最小正周期;
(2)当
∥
,α-x,α+x都是锐角时,求cos2α的值.
查看答案