(1)根据正项数列{an},以及an2≤an-an+1,可得0<an+1≤an-an2,解此不等式即可证明结论;
(2)根据(1),不难得出a1<1,a2<1,利用数学归纳法证明即可.证明时先证:①当n=1时成立.②再假设n=k(k≥1)时,成立,即,再递推到n=k+1时,成立即可.
【解析】
(1)an2≤an-an+1,得an+1≤an-an2
∵在数列{an}中an>0,
∴an+1>0,
∴an-an2>0,
∴0<an<1
故数列{an}中的任意一项都小于1.
(2)由(1)知,
那么,
由此猜想:(n≥2).下面用数学归纳法证明:
①当n=2时,显然成立;
②当n=k时(k≥2,k∈N)时,假设猜想正确,即,
那么,
∴当n=k+1时,猜想也正确
综上所述,对于一切n∈N*,都有.