满分5 > 高中数学试题 >

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮...

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为manfen5.com 满分网,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
(1)本题是一个等可能事件的概率,设出袋中原有n个白球,写出试验发生包含的事件数和满足条件的事件数,根据等可能事件的概率公式得到关于n的方程,解方程即可. (2)ξ的所有可能值为:1,2,3,4,5,求出ξ取每一个值时对应的概率,即得分布列,再根据分布列,依据求数学期望的公式求得期望Eξ. (3)甲先取,甲只有可能在第1次,第3次和第5次取球.这三种情况是互斥关系,根据互斥事件的概率公式得到结果. 【解析】 (1)设袋中原有n个白球,由题意知…(3分) ∴n(n-1)=6得n=3或n=-2(舍去), 所以袋中原有3个白球.…(5分) (2)由题意,ξ的可能取值为1,2,3,4,5, 所以;  ;;  ;…(10分) 所以ξ的分布列为: ξ 1 2 3 4 5 P …(12分) (3)因为甲先取,所以甲只有可能在第1次,第3次和第5次取球,记”甲取到白球”为事件A, 由题意可得:P(A)=P(”ξ=1”,或”ξ=3”,或”ξ=5”) ∵事件”ξ=1”,或”ξ=3”,或”ξ=5”两两互斥, ∴…(16分)
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)若存在manfen5.com 满分网,使不等式f(x)<m成立,求实数m的取值范围.
查看答案
下面是关于三棱锥的四个命题:
①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.
④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
其中,真命题的编号是    .(写出所有真命题的编号) 查看答案
如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是   
manfen5.com 满分网 查看答案
若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是    查看答案
设双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQF是直角三角形,则双曲线的离心率e=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.