已知数列{a
n}的首项a
1=5,前n项和为S
n,且S
n+1=2S
n+n+5(n∈N
*)
(I)证明数列{a
n+1}是等比数列;
(II)令f(x)=a
1x+a
2x
2+…+a
nx
n,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n
2-13n的大小.
考点分析:
相关试题推荐
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
查看答案
函数
.
(1)求函数f(x)的最小正周期;
(2)若存在
,使不等式f(x
)<m成立,求实数m的取值范围.
查看答案
下面是关于三棱锥的四个命题:
①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.
④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
其中,真命题的编号是
.(写出所有真命题的编号)
查看答案
如图,连接△ABC的各边中点得到一个新的△A
1B
1C
1,又连接△A
1B
1C
1的各边中点得到△A
2B
2C
2,如此无限继续下去,得到一系列三角形:△ABC,△A
1B
1C
1,△A
2B
2C
2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是
.
查看答案
若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是
.
查看答案