满分5 > 高中数学试题 >

已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈...

已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*
(I)证明数列{an+1}是等比数列;
(II)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n2-13n的大小.
(I)根据an+1=Sn+1-Sn,得到n≥2时an+1和an关系式即an+1=2an+1,两边同加1得到an+1+1=2(an+1),最后验证n=1时等式也成立,进而证明数列{an+1}是等比数列. (II)通过(I){an+1}的首项为5公比为2求得数列an+1的通项公式,进而求得an的通项公式,代入f(x)进而求出f'(x),再求得f‘(1),进而求得2f‘(1).要比较2f'(1)与23n2-13n的大小,只需看2f′(1)-(23n2-13n)于0的关系. 【解析】 (I)由已知Sn+1=2Sn+n+5(n∈N*), 可得n≥2,Sn=2Sn-1+n+4两式相减得Sn+1-Sn=2(Sn-Sn-1)+1即an+1=2an+1 从而an+1+1=2(an+1) 当n=1时S2=2S1+1+5所以a2+a1=2a1+6又a1=5所以a2=11 从而a2+1=2(a1+1) 故总有an+1+1=2(an+1),n∈N*又a1=5,a1+1≠0 从而=2即数列{an+1}是等比数列; (II)由(I)知an=3×2n-1 因为f(x)=a1x+a2x2++anxn所以f′(x)=a1+2a2x++nanxn-1 从而f′(1)=a1+2a2++nan=(3×2-1)+2(3×22-1)++n(3×2n-1) =3(2+2×22++n×2n)-(1+2++n)=3(n-1)•2n+1-+6. 由上2f′(1)-(23n2-13n)=12(n-1)•2n-12(2n2-n-1) =12(n-1)•2n-12(n-1)(2n+1) =12(n-1)[2n-(2n+1)]① 当n=1时,①式=0所以2f'(1)=23n2-13n; 当n=2时,①式=-12<0所以2f'(1)<23n2-13n 当n≥3时,n-1>0又2n=(1+1)n=Cn+Cn1++Cnn-1+Cnn≥2n+2>2n+1 所以(n-1)[2n-(2n+1)]>0即①>0从而2f′(1)>23n2-13n.
复制答案
考点分析:
相关试题推荐
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为manfen5.com 满分网,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
查看答案
函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)若存在manfen5.com 满分网,使不等式f(x)<m成立,求实数m的取值范围.
查看答案
下面是关于三棱锥的四个命题:
①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.
④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.
其中,真命题的编号是    .(写出所有真命题的编号) 查看答案
如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是   
manfen5.com 满分网 查看答案
若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.