满分5 > 高中数学试题 >

已知椭圆(a>b>0)的左、右焦点分别为F1、F2,A为上顶点,AF1交椭圆E于...

已知椭圆manfen5.com 满分网(a>b>0)的左、右焦点分别为F1、F2,A为上顶点,AF1交椭圆E于另一点B,且△ABF2的周长为8,点F2到直线AB的距离为2.
(I)求椭圆E的标准方程;
(II)求过D(1,0)作椭圆E的两条互相垂直的弦,M、N分别为两弦的中点,求证:直线MN经过定点,并求出定点的坐标.

manfen5.com 满分网
(I)AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8⇒a=2,再由点F2到直线AB的距离,可以求出椭圆E的标准方程:. (II)由题设条件可知,由此可推导出直线MN过定点 【解析】 (I)AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8,∴a=2 设,因为A(0,b), ∴直线AB的方程为, ∴点F2到直线AB的距离,, ∴椭圆E的标准方程:. (II)设以M为中点的弦与椭圆交于(x1,y1),(x2,y2),则 ∴,同理, ∴,, 整理得, ∴直线MN过定点. 当直线P1Q1的斜率不存在或为零时,P1Q1、P2Q2的中点为点D及原点O,直线MN为x轴, 也过此定点, ∴直线MN过定点.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足:manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:manfen5.com 满分网
(Ⅲ)设manfen5.com 满分网,且manfen5.com 满分网,证明:manfen5.com 满分网
查看答案
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角Q-BD-P为45°.

manfen5.com 满分网 查看答案
已知某种植物种子每粒成功发芽的概率都为manfen5.com 满分网,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;
(1)求随机变量ξ的数学期望
(2)记“关于x的不等式 ξx2-ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率P(A).
查看答案
在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知manfen5.com 满分网
(1)若△ABC的面积等于manfen5.com 满分网,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
查看答案
manfen5.com 满分网,则函数manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.