满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,...

manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
(I)由已知中侧面ABB1A1,ACC1A1均为正方形,由正方形的几何特征结合线面垂直的判定,易得AA1⊥平面ABC,即三棱柱ABC-A1B1C1是直三棱柱,再由点D是棱B1C1的中点,结合等腰三角形“三线合一”,及直三棱柱的几何特征,结合线面垂直的判定定理,即可得到A1D⊥平面BB1C1C; (Ⅱ)连接AC1,交A1C于点O,连接OD,由正方形的几何特征及三角形中位线的性质,可得OD∥AB1,进而结合线面平行的判定定理,我们易得,AB1∥平面A1DC; (Ⅲ)因为AB,AC,AA1两两互相垂直,故可以以A坐标原点,建立空间坐标系,求出几何体中各顶点的坐标,进而求出平面DA1C与平面A1CA的法向量,代入向量夹角公式,即可得到答案. (Ⅰ)证明:因为侧面ABB1A1,ACC1A1均为正方形, 所以AA1⊥AC,AA1⊥AB, 所以AA1⊥平面ABC,三棱柱ABC-A1B1C1是直三棱柱.(1分) 因为A1D⊂平面A1B1C1,所以CC1⊥A1D,(2分) 又因为A1B1=A1C1,D为B1C1中点, 所以A1D⊥B1C1.(3分) 因为CC1∩B1C1=C1, 所以A1D⊥平面BB1C1C.(4分) (Ⅱ)证明:连接AC1,交A1C于点O,连接OD, 因为ACC1A1为正方形,所以O为AC1中点,又D为B1C1中点, 所以OD为△AB1C1中位线,所以AB1∥OD,(6分) 因为OD⊂平面A1DC,AB1⊄平面A1DC, 所以AB1∥平面A1DC.(8分) (Ⅲ)【解析】 因为侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°, 所以AB,AC,AA1两两互相垂直,如图所示建立直角坐标系A-xyz. 设AB=1,则.,(9分) 设平面A1DC的法向量为n=(x,y,z),则有,,x=-y=-z, 取x=1,得n=(1,-1,-1).(10分) 又因为AB⊥平面ACC1A1,所以平面ACC1A1的法向量为,(11分),(12分) 因为二面角D-A1C-A是钝角, 所以,二面角D-A1C-A的余弦值为.(13分)
复制答案
考点分析:
相关试题推荐
一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率;
(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X的分布列.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
manfen5.com 满分网(几何证明选讲选做题)如图,PC、DA为⊙O的切线,A、C为切点,AB为⊙O的直径,若 DA=2,CD:DP=1:2,则AB=    查看答案
(坐标系与参数方程选做题)已知曲线C的参数方程为manfen5.com 满分网(t为参数),则在曲线C上横坐标为1的点P处的切线方程为    查看答案
在等式“1=manfen5.com 满分网+manfen5.com 满分网”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.