满分5 > 高中数学试题 >

已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;...

已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
(Ⅰ)由函数,知(x>0).由曲线y=f(x)在x=1和x=3处的切线互相平行,能求出a的值. (Ⅱ)(x>0).根据a的取值范围进行分类讨论能求出f(x)的单调区间. (Ⅲ)对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),等价于在(0,2]上有f(x)max<g(x)max.由此能求出a的取值范围. 【解析】 (Ⅰ)∵函数, ∴(x>0). ∵曲线y=f(x)在x=1和x=3处的切线互相平行, ∴f'(1)=f'(3), 即, 解得. (Ⅱ)(x>0). ①当a≤0时,x>0,ax-1<0, 在区间(0,2)上,f'(x)>0; 在区间(2,+∞)上f'(x)<0, 故f(x)的单调递增区间是(0,2), 单调递减区间是(2,+∞). ②当时,, 在区间(0,2)和上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是(0,2)和,单调递减区间是 ③当时,,故f(x)的单调递增区间是(0,+∞). ④当时,,在区间和(2,+∞)上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是和(2,+∞),单调递减区间是. (Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max. 由已知,g(x)max=0,由(Ⅱ)可知, ①当时,f(x)在(0,2]上单调递增, 故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2, 所以,-2a-2+2ln2<0,解得a>ln2-1, 故. ②当时,f(x)在上单调递增, 在上单调递减, 故. 由可知, 2lna>-2,-2lna<2, 所以,-2-2lna<0,f(x)max<0, 综上所述,a>ln2-1.
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网的长轴长是短轴长的manfen5.com 满分网倍,F1,F2是它的左,右焦点.
(1)若P∈C,且manfen5.com 满分网,|PF1|•|PF2|=4,求椭圆C的方程;
(2)在(1)的条件下,过动点Q作以F2为圆心、以1为半径的圆的切线QM(M是切点),且使QF1|=manfen5.com 满分网|QM|,,求动点Q的轨迹方程.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
查看答案
一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率;
(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X的分布列.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
manfen5.com 满分网(几何证明选讲选做题)如图,PC、DA为⊙O的切线,A、C为切点,AB为⊙O的直径,若 DA=2,CD:DP=1:2,则AB=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.