满分5 > 高中数学试题 >

如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线L...

manfen5.com 满分网如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线L与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:
(Ⅰ)∠BAC=CAG;
(Ⅱ)AC2=AE•AF.
(I)由圆周角定理的推论2,我们易判断∠BCA为直角,结合弦切角定理,及直线L与圆O相切于C,交AB于E,且与AF垂直,我们易结合等角的余角相等得到答案. (II)由弦切角定理得∠ACE=∠AFC,结合(I)的结论,可得到△ACF∽△AEC,由三角形相似的性质,即可得到答案. 证明:(Ⅰ)连接BC, ∵AB是直径, ∴∠ACB=90°, ∴∠ACB=∠AGC=90°.(2分) ∵GC切圆O于C, ∴∠GCA=∠ABC.(4分) ∴∠BAC=∠CAG.(5分) (Ⅱ)连接CF,∵EC切圆O于C,∴∠ACE=∠AFC.(6分) 又∠BAC=∠CAG,∴△ACF∽△AEC.(8分) ∴,∴AC2=AE•AF(10分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
查看答案
已知两点A、B分别在直线y=x和y=-x上运动,且manfen5.com 满分网,动点P满足manfen5.com 满分网(O为坐标原点),点P的轨迹记为曲线C.
(1)求曲线C的方程;
(2)过曲线C上任意一点作它的切线l,与椭圆manfen5.com 满分网交于M、N两点,求证:manfen5.com 满分网为定值.
查看答案
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55)150.3
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

manfen5.com 满分网 查看答案
如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

manfen5.com 满分网 查看答案
已知在△ABC中,角A,B,C的对边为a,b,c向量manfen5.com 满分网manfen5.com 满分网,且m⊥n.
(I)求角C的大小.
(Ⅱ)若manfen5.com 满分网,求sin(A-B)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.