满分5 >
高中数学试题 >
集合A={x|0<x≤3,x∈R},B={x|-1≤x≤2,x∈R},则A∪B=...
集合A={x|0<x≤3,x∈R},B={x|-1≤x≤2,x∈R},则A∪B= .
考点分析:
相关试题推荐
设函数f(x)=|2x+1|-|x-2|.
(1)求不等式f(x)>2的解集;
(2)若∀x∈R,
恒成立,求实数t的取值范围.
查看答案
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=
.
(I)写出直线l的参数方程;
(II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
查看答案
如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线L与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:
(Ⅰ)∠BAC=CAG;
(Ⅱ)AC
2=AE•AF.
查看答案
设函数f(x)=x
2-mlnx,h(x)=x
2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
查看答案
已知两点A、B分别在直线y=x和y=-x上运动,且
,动点P满足
(O为坐标原点),点P的轨迹记为曲线C.
(1)求曲线C的方程;
(2)过曲线C上任意一点作它的切线l,与椭圆
交于M、N两点,求证:
为定值.
查看答案