满分5 > 高中数学试题 >

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)...

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对∀x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程manfen5.com 满分网的根的个数.
(1)先利用f(x)是实数集R上的奇函数求出a,再利用g(x)=λf(x)+sinx是区间[-1,1]上的减函数求出g(-1)即可. (2)利用(1)的结论把问题转化为(t+1)λ+t2+sin1+1≥0在λ∈(-∞,-1]恒成立,再利用图形找到t满足的条件即可. (3)把研究根的个数问题转化为两个函数图象的交点问题,借助于图形可得结论. 【解析】 (1)f(x)=ln(ex+a)是奇函数,则ln(e-x+a)=-ln(ex+a)恒成立. ∴(e-x+a)(ex+a)=1.1+ae-x+aex+a2=1,∴a(ex+e-x+a)=0,∴a=0. 又∵g(x)在[-1,1]上单调递减,∴g(x)max=g(-1)=-λ-sin1, (2)只需-λ-sin1≤t2+λt+1在λ∈(-∞,-1]上恒成立, ∴(t+1)λ+t2+sin1+1≥0在λ∈(-∞,-1]恒成立. 令h(λ)=(t+1)λ+t2+sin1+1(λ≤-1),则 ∴而t2-t+sin1≥0恒成立,∴t≤-1. (3)由(1)知f(x)=x,∴方程为, 令, ∵, 当x∈(0,e)时,f′1(x)≥0,f1(x)在x∈(0,e]上为增函数; x∈[e,+∞)时,f′1(x)≤0,f1(x)在x∈[e,+∞)上为减函数, 当x=e时,. 而f2(x)=(x-e)2+m-e2, ∴函数f1(x)、f2(x)在同一坐标系的大致图象如图所示, ∴①当,即时,方程无解. ②当,即时,方程有一个根. ③当,即时,方程有两个根.
复制答案
考点分析:
相关试题推荐
已知一非零向量列{an}满足:a1=(1,2),manfen5.com 满分网
(1)证明:{|an|}是等比数列;
(2)求向量an-1与an的夹角θ(n≥2);
(3)把向量a1,a2,…,an…中所有与a1共线的向量按原来的前后顺序排成一列,记为b1,b2,…,bn,…,其中b1=a1,若manfen5.com 满分网(O是坐标原点),求Sn
查看答案
已知点M(-1,0),N(1,0),P是平面上一动点,且满足manfen5.com 满分网
(1)求点P的轨迹C对应的方程;
(2)已知点A(m,2)(m∈R)在曲线C上,点D、E是曲线C上异于点A的两个动点,若AD、AE的斜率之积等于2,试判断直线DE是否过定点?并证明你的结论.
查看答案
经调查某校高三年级学生家庭月平均收入不多于10000元的共有1000人,统计这些学生家庭月平均收入情况,得到家庭月平均收入频率分布直方图如图所示.
某企业准备给该校高三学生发放助学金,发放规定为:家庭收入在4000元以下(≤4000元)的每位同学得助学金2000元,家庭收入在(4000,6000](元)间的每位同学得助学金1500元,家庭收入在(6000,8000](元)间的每位同学得助学金1000元,家庭收入在(8000,10000](元)间的同学不发助学金.
(1)求频率分布直方图中的x值;
(2)求该校高三年级学生中获得1500元助学金以上(≥1500元)的人数.

manfen5.com 满分网 查看答案
如图,菱形ABCD所在平面与矩形ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中点.
(1)求证:AM∥平面BDE;(6分)
(2)求证:平面DEF⊥平面BEF.(8分)

manfen5.com 满分网 查看答案
设函数f(x)=manfen5.com 满分网,其中向量manfen5.com 满分网
(1)求函数f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为manfen5.com 满分网,求△ABC外接圆半径R.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.