满分5 > 高中数学试题 >

设函数f(x)=sin(ωx+)-1(ω>0)的导数f′(x)的最大值为3,则f...

设函数f(x)=sin(ωx+manfen5.com 满分网)-1(ω>0)的导数f′(x)的最大值为3,则f(x)的图象的一条对称轴的方程是( )
A.x=manfen5.com 满分网
B.x=manfen5.com 满分网
C.x=manfen5.com 满分网
D.x=manfen5.com 满分网
先对函数求导,由导数f′(x)的最大值为3,可得ω的值,从而可得函数的解析式,然后结合三角函数的性质可得函数的对称轴处取得函数的最值从而可得. 【解析】 对函数求导可得, 由导数f′(x)的最大值为3可得ω=3 ∴f(x)=sin(3x+)-1 由三角函数的性质可得,函数的对称轴处将取得函数的最值结合选项,可得x= 故选A
复制答案
考点分析:
相关试题推荐
设z=1+i(i是虚数单位),则manfen5.com 满分网=( )
A.-1-i
B.-1+i
C.1-i
D.1+i
查看答案
已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对∀x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程manfen5.com 满分网的根的个数.
查看答案
已知一非零向量列{an}满足:a1=(1,2),manfen5.com 满分网
(1)证明:{|an|}是等比数列;
(2)求向量an-1与an的夹角θ(n≥2);
(3)把向量a1,a2,…,an…中所有与a1共线的向量按原来的前后顺序排成一列,记为b1,b2,…,bn,…,其中b1=a1,若manfen5.com 满分网(O是坐标原点),求Sn
查看答案
已知点M(-1,0),N(1,0),P是平面上一动点,且满足manfen5.com 满分网
(1)求点P的轨迹C对应的方程;
(2)已知点A(m,2)(m∈R)在曲线C上,点D、E是曲线C上异于点A的两个动点,若AD、AE的斜率之积等于2,试判断直线DE是否过定点?并证明你的结论.
查看答案
经调查某校高三年级学生家庭月平均收入不多于10000元的共有1000人,统计这些学生家庭月平均收入情况,得到家庭月平均收入频率分布直方图如图所示.
某企业准备给该校高三学生发放助学金,发放规定为:家庭收入在4000元以下(≤4000元)的每位同学得助学金2000元,家庭收入在(4000,6000](元)间的每位同学得助学金1500元,家庭收入在(6000,8000](元)间的每位同学得助学金1000元,家庭收入在(8000,10000](元)间的同学不发助学金.
(1)求频率分布直方图中的x值;
(2)求该校高三年级学生中获得1500元助学金以上(≥1500元)的人数.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.