满分5 > 高中数学试题 >

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小...

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Snmanfen5.com 满分网manfen5.com 满分网与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.
(Ⅰ)根据题中已知条件结合数列的基本性质便可求出数列an的通项公式,然后利用题中关于bn的定义便可求出数列分别讨论n为奇数和偶数时bn的表达式便可求得bn的通项公式; (Ⅱ)存在,根据题中条件先求出p、q与m的关系可知3p-1>0(或3p-1<0)不符合条件,然后3p-1=0便可求出p值,进而求得q的取值范围. 【解析】 (Ⅰ)由于是与(an+1)2的等比中项,∴ 当n=1时,,∴a1=1,(2分) 当n≥2时,,由an>0,化简有an-an-1=2 所以{an}是等差数列,an=2n-1,检验当n=1时也适合,即an=2n-1(5分) 对于正整数,由an≥m,得. 根据bm的定义可知:当m=2k-1时,bm=k(k∈N*);当m=2k时,bm=k+1(k∈N*). ∴(9分) (Ⅱ)假设存在p和q满足条件,由不等式pn+q≥m及p>0,得:. ∵bm=3m+2(m∈N*),根据bm的定义可知,对于任意的正整数m 都有,即-2p-q≤(3p-1)m<-p-q对任意的正整数m都成立. 当3p-1>0(或3p-1<0)时,得(或), 这与上述结论矛盾!(13分) 当3p-1=0,即时,得,解得. ∴存在p和q,使得bm=3m+2(m∈N*); p和q的取值范围分别是,.(16分)
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,中心在原点,焦点在X轴上的椭圆G的离心率为manfen5.com 满分网,左顶点A(-4,0),圆O':(x-2)2+y2=r2是椭圆G的内接△ABC的内切圆.
(Ⅰ) 求椭圆G的方程;
(Ⅱ)求圆O'的半径r;
(Ⅲ)过M(0,1)作圆G的两条切线交椭圆于E,F两点,判断直线EF与圆O'的位置关系,并证明.

manfen5.com 满分网 查看答案
国家加大水利工程建设,某地区要修建一条灌溉水渠,其横断面为等腰梯形(如图),底角A为60,考虑到坚固性及用料原因,要求其横断面的面积为manfen5.com 满分网平方米,记水渠深为x米,用料部分的周长(即渠底BC及两腰长的和)为y米,
(1).求y关于x的函数关系式,并指出其定义域;
(2).当水渠的腰长x为多少米时,水泥用料最省(即断面的用料部分的周长最小)?求此时用料周长的值
(3).如果水渠的深限制在manfen5.com 满分网范围内时,横断面用料部分周长的最小值是多少米?

manfen5.com 满分网 查看答案
已知manfen5.com 满分网=(1+cosα,sinα),manfen5.com 满分网=(1-cosβ,sinβ),manfen5.com 满分网,α∈(0,π),β∈(π,2π),向量manfen5.com 满分网manfen5.com 满分网夹角为θ1,向量manfen5.com 满分网manfen5.com 满分网夹角为θ2,且θ12=manfen5.com 满分网,若△ABC中角A、B、C的对边分别为a、b、c,且角A=β-α.
求(Ⅰ)求角A 的大小; 
(Ⅱ)若△ABC的外接圆半径为manfen5.com 满分网,试求b+c取值范围.
查看答案
已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

manfen5.com 满分网 查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆x2+y2=1上一点与直线manfen5.com 满分网上一点的“折线距离”的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.