已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围.
考点分析:
相关试题推荐
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD
(I)求证:AB⊥DE
(Ⅱ)求三棱锥E-ABD的侧面积.
查看答案
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
| 文艺节目 | 新闻节目 | 总计 |
20至40岁 | 42 | 16 | 58 |
大于40岁 | 18 | 24 | 42 |
总计 | 60 | 40 | 100 |
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名观众,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
查看答案
设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且
.
(1)求角A的值;
(2)若
.
查看答案
已知等差数列{a
n}满足:a
3=7,a
5+a
7=26.{a
n}的前n项和为S
n.
(1)求a
4及S
n;
(2)令
(n∈N
*),求数列{b
n}的前n项和T
n.
查看答案
本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
,点E,F分别为线段AB,CD的中点,则EF=
.
(2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
.
(3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为
.
查看答案