满分5 > 高中数学试题 >

设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且. ...

设椭圆manfen5.com 满分网的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值.

manfen5.com 满分网
(Ⅰ)由焦点坐标可求得c,进而根据求得a,进而求得b,则椭圆方程可得. (Ⅱ)先看当直线DE和直线MN与x轴垂直时,可求得四边形DMEN的面积;进而看直线DE,MN均与x轴不垂直时,设DE的直线方程与椭圆方程联立消去y,设D(x1,y1),E(x2,y2),进而利用韦达定理可得x1x2和x1+x2,进而可表示出|DE|,同理可表示出|MN|进而可表示出四边形的面积,进而根据均值不等式求得四边形的面积的范围,则最大值和最小值可得. 【解析】 (Ⅰ)由题意,,∴A(a2,0), ∵∴F2为AF1的中点 ∴a2=3,b2=2 即椭圆方程为. (Ⅱ)当直线DE与x轴垂直时,|DE|=, 此时,四边形DMEN的面积为. 同理当MN与x轴垂直时,也有四边形DMEN的面积为. 当直线DE,MN均与x轴不垂直时,设DE:y=k(x+1),代入椭圆方程,消去y得:(2+3k2)x2+6k2x+(3k2-6)=0. 设D(x1,y1),E(x2,y2),则 所以,, 所以,, 同理,|MN|=. 所以,四边形的面积S===, 令,得 因为, 当k=±1时,,且S是以u为自变量的增函数, 所以. 综上可知,.即四边形DMEN面积的最大值为4,最小值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(Ⅰ)求证:平面PAC⊥平面ABC;
(Ⅱ)求二面角M-AC-B的大小;
(Ⅲ)求三棱锥P-MAC的体积.
查看答案
甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成中随机抽取8次,记录如下
甲:82,91,79,78,95,88,83,84;乙:92,95,80,75,83,80,90,85.
(1)画出甲、乙两位学生成绩的茎叶图;
(2)现要从中选派一人参加数学竞赛,从统计学角度,你认为派哪位学生参加合请说明理由.
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
查看答案
设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列;
(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.
查看答案
已知向量manfen5.com 满分网
(I)若manfen5.com 满分网,求COS(manfen5.com 满分网-x)的值;
(II)记manfen5.com 满分网,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
A.(极坐标系与参数方程选做题) 已知圆ρ=3cosθ,则圆截直线manfen5.com 满分网(t是参数)所得的弦长为   
B.(几何证明选讲选做题) 如图:PA与圆O相切于A,PCB为圆O的割线,并且不过圆心O,已知∠BPA=30°,manfen5.com 满分网,PC=1,则圆O的半径等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.