满分5 > 高中数学试题 >

已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于(...

已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于( )
A.{x|x<-2}
B.{x|x>3}
C.{x|-1<x<2}
D.{x|2<x<3}
先化简两个集合,再由交集的定义求交集,然后比对四个选项,选出正确选项来 【解析】 由题意集合M={x|x2<4}═{x|-2<x<2},N={x|x2-2x-3<0}={x|-1<x<3}, ∴M∩N={x|-1<x<2} 故选C
复制答案
考点分析:
相关试题推荐
对于整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<|b|.特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(Ⅱ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“谐和集”.请写出一个含有元素7的“谐和集”B和一个含有元素8的非“谐和集”C,并求最大的m∈A,使含m的集合A有12个元素的任意子集为“谐和集”,并说明理由.
查看答案
已知椭圆manfen5.com 满分网经过点A(2,1),离心率为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(3,0)的直线l与椭圆C交于不同的两点M,N,设直线AM和直线AN的斜率分别为kAM和kAN,求证:kAM+kAN为定值.
查看答案
已知函数f(x)=ex-ax,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,都有f(x)≥0成立,求实数a的取值范围.
查看答案
在长方形AA1B1B中,AB=2A1=4,C,C1分别是AB,A1B1的中点(如图).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图),已知D,E分别是A1B1,CC1的中点.
(Ⅰ)求证:C1D∥平面A1BE;
(Ⅱ)求证:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱锥C1-A1BE的体积.
manfen5.com 满分网
查看答案
设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足manfen5.com 满分网,求b1•b2•…•bn(用含n的式子表示).
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.