满分5 > 高中数学试题 >

数列{an}满足a1=2,an+1=an2+6an+6(n∈N×) (Ⅰ)设Cn...

数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设manfen5.com 满分网,数列{bn}的前n项的和为Tn,求证:manfen5.com 满分网
(I)由已知可得,an+1+3=(an+3)2,利用构造法令Cn=log5(an+3),则可得,从而可证数列{cn}为等比数列 (II)由(I)可先求数列cn,代入cn=log5(an+3)可求an (III)把(II)中的结果代入整理可得,,则代入Tn=b1+b2+…+bn相消可证 【解析】 (Ⅰ)由an+1=an2+6an+6得an+1+3=(an+3)2, ∴=2,即cn+1=2cn ∴{cn}是以2为公比的等比数列. (Ⅱ)又c1=log55=1, ∴cn=2n-1,即=2n-1, ∴an+3= 故an=-3 (Ⅲ)∵bn=-=-,∴Tn=-=--. 又0<=. ∴-≤Tn<-
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
查看答案
已知函数f(x)=manfen5.com 满分网
(1)判断函数f(x)在区间(0,+∞)上的单调性并加以证明;
(2)求函数f(x)的值域;
(3)如果关于x的方程f(x)=kx3有三个不同的实数解,求实数k的取值范围.
查看答案
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖.现有“世博会会徽”、“海宝”(世博会吉祥物)图案和普通卡片三种卡片共24张.
(1)若已知“世博会会徽”共3张,若从中任取出1张卡片,取到“海宝”的概率是manfen5.com 满分网.问普通卡片的张数是多少?
(2)现将1张“世博会会徽”、2张“海宝”、3张普通卡片放置抽奖盒中,抽奖规则是:抽奖者每次抽取两张卡片,若抽到两张“海宝”卡获一等奖,抽到“世博会会徽”获二等奖.求抽奖者获奖的概率.
查看答案
在△ABC中,设内角A、B、C的对边分别为a、b、c,且manfen5.com 满分网
(1)求角C的大小;
(2)若manfen5.com 满分网且a+b=5求△ABC的面积.
查看答案
已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x∈[0,1]时,f(x)=x2,现有四个命题:
①f(x)是周期函数;且周期为2;②当x∈[1,2]时,f(x)=2x-x2;③f(x)是偶函数;④manfen5.com 满分网
其中正确命题是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.