如图,在四棱锥P-ABCD中,△PCD为等边三角形,四边形ABCD为矩形,平面PDC丄平面ABCD,M、N、E分别是AB、PD、PC的中点,AB=2AD.
(Ⅰ)求证DE丄MN;
(Ⅱ)求二面角B-PA-D的余弦值.
考点分析:
相关试题推荐
如图是两个独立的转盘(A)、(B),在两个图中的四个扇形区域的圆心角分别为60°、120°、90°90°.用这两个转盘进行玩游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域数为x,转盘(B)指针所对的区域数为y,x、y∈{1,2,3,4},设x+y的值为ξ,每一次游戏得到奖励分为ξ.
(1)求x<3且y>2的概率;
(2)某人进行了6次游戏,求他平均可以得到的奖励分.
查看答案
如图,已知平面四边形ABCD中,△BCD为正三角形,AB=AD=2,∠BAD=2θ,记四边形ABCD的面积为S.
(1)将S表示为θ的函数;
(2)求S的最大值及相应的θ值.
查看答案
如图,AB为圆O的直径,C为圆O上一点,AP和过C的切线互相垂直,垂足为P,过B的切线交过C的切线于T,PB交圆O于Q,若∠BTC=120°,AB=4,则PQ•PB=
.
查看答案
(坐标系与参数方程选做题).
已知曲线C的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是
(t为参数),则直线l与曲线C相交所成的弦的弦长为
.
查看答案
方程x+y+z=12的正整数解的个数为
.
查看答案