(1)选修4-2:矩阵与变换
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=
,N=
,点A、B、C在矩阵MN对应的变换下得到点分别为A
1、B
1、C
1,△A
1B
1C
1的面积是△ABC面积的2倍,求k的值.
考点分析:
相关试题推荐
已知函数f(x)满足如下条件:当x∈(-1,1]时,f(x)=ln(x+1),x∈R,且对任意x∈R,都有f(x+2)=2f(x)+1.
(1)求函数f(x)的图象在点(0,f(0))处的切线方程;
(2)求当x∈(2k-1,2k+1],k∈N*时,函数f(x)的解析式;
(3)是否存在x
k∈(2k-1,2k+1],k=0,1,2,…,2011,使得等式
成立?若存在就求出x
k(k=0,1,2,…,2011),若不存在,说明理由.
查看答案
在平面直角坐标系xOy中,经过点
且斜率为k的直线l与椭圆
有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量
与
共线?如果存在,求k值;如果不存在,请说明理由.
查看答案
如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
查看答案
某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)甲班10名同学成绩的标准差______乙班10名同学成绩的标准差(填“>”,“<”);
(Ⅱ)从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率;
(Ⅲ)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X,求X的分布列和期望.
查看答案
如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交与点A,与钝角α的终边OB交于点B(x
B,y
B),设∠BAO=β.
(1)用β表示α;
(2)如果
,求点B(x
B,y
B)的坐标;
(3)求x
B-y
B的最小值.
查看答案