满分5 > 高中数学试题 >

如图所示,四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,∠...

如图所示,四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,∠APD=90°,面APD⊥面ABCD,AB=1,AD=2,E,F分别为PC和BD的中点.
(1)求证:EF∥平面PAD;
(2)证明:平面PAD⊥平面PDC;
(3)求四棱锥P-ABCD的体积.

manfen5.com 满分网
(1)欲证EF∥平面PAD,根据直线与平面平行的判定定理可知只需证EF与平面PAD内一直线平行,连AC,根据中位线可知EF∥PA,EF⊄平面PAD,PA⊂平面PAD,满足定理所需条件; (2)欲证平面PAD⊥平面ABCD,根据面面垂直的判定定理可知在平面ABCD内一直线与平面PAD垂直,根据面面垂直的性质定理可知CD⊥平面PAD,又CD⊂平面ABCD,满足定理所需条件; (3)过P作PO⊥AD于O,从而PO⊥平面ABCD,即为四棱锥的高,最后根据棱锥的体积公式求出所求即可. 证明:(1)连AC,由题可知F在AC上,∵E,F分别是AC,PC的中点 ∴EF∥PA ∵EF⊄平面PAD,PA⊂平面PAD ∴EF∥平面PAD(4分) 证明:(2)平面PAD⊥平面ABCD于AD,CD⊥AD, ∴CD⊥平面PAD,又CD⊂平面PDC,∴平面PAD⊥平面PDC(8分) 【解析】 (3)过P作PO⊥AD于O∴PO⊥平面ABCD, ∵△PAD是等腰直角且AD=2,∴PO=1 ∴(12分)
复制答案
考点分析:
相关试题推荐
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
环数78910
命中次数2783
(1)求此运动员射击的环数的平均值;
(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为m次、n次,每个基本事件为(m,n),求事件“m+n≥10”的概率.
查看答案
如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且manfen5.com 满分网,∠AOB=α,∠AOP=θ(0<θ<π),manfen5.com 满分网,四边形OAQP的面积为S.
(Ⅰ)求cosα+sinα;
(Ⅱ)求manfen5.com 满分网的最大值及此时θ的值θ

manfen5.com 满分网 查看答案
(几何证明选讲选做题)如图,过点D做圆的切线与圆切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=   
manfen5.com 满分网 查看答案
若直线ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网与直线3x+ky=1垂直,则常数k=    查看答案
manfen5.com 满分网对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界):其中为凸集的是    (写出所有凸集相应图形的序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.