已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x
2-2x-1,且g(1)=-1.
(1)求g(x)的表达式;
(2)设1<m≤e,H(x)=g(x+
)+mlnx-(m+1)x+
,求证:H(x)在[1,m]上为减函数;
(3)在(2)的条件下,证明:对任意x
1,x
2∈[1,m],恒有|H(x
1)-H(x
2)|<1.
考点分析:
相关试题推荐
已知函数f(x)=x
2+m,其中m∈R.定义数列{a
n}如下:a
1=0,a
n+1=f(a
n),n∈N
*.
(1)当m=1时,求a
2,a
3,a
4的值;
(2)是否存在实数m,使a
2,a
3,a
4构成公差不为0的等差数列?若存在,请求出实数m的值,若不存在,请说明理由;
(3)求证:当
时,总能找到k∈N,使得a
k大于2010.
查看答案
东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=
.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.
(1)求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
查看答案
如图所示,四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,∠APD=90°,面APD⊥面ABCD,AB=1,AD=2,E,F分别为PC和BD的中点.
(1)求证:EF∥平面PAD;
(2)证明:平面PAD⊥平面PDC;
(3)求四棱锥P-ABCD的体积.
查看答案
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(1)求此运动员射击的环数的平均值;
(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为m次、n次,每个基本事件为(m,n),求事件“m+n≥10”的概率.
查看答案
如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且
,∠AOB=α,∠AOP=θ(0<θ<π),
,四边形OAQP的面积为S.
(Ⅰ)求cosα+sinα;
(Ⅱ)求
的最大值及此时θ的值θ
.
查看答案