满分5 > 高中数学试题 >

命题“对任意的x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3...

命题“对任意的x∈R,x3-x2+1≤0”的否定是( )
A.不存在x∈R,x3-x2+1≤0
B.存在x∈R,x3-x2+1≤0
C.存在x∈R,x3-x2+1>0
D.对任意的x∈R,x3-x2+1>0
根据命题“对任意的x∈R,x3-x2+1≤0”是全称命题,其否定是对应的特称命题,从而得出答案. 【解析】 ∵命题“对任意的x∈R,x3-x2+1≤0”是全称命题 ∴否定命题为:存在x∈R,x3-x2+1>0 故选C.
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网是( )
A.奇函数
B.偶函数
C.非奇非偶函数
D.既是奇函数又是偶函数
查看答案
设函数manfen5.com 满分网则不等式f(x)>f(1)的解集是( )
A.(-3,1)∪(3,+∞)
B.(-3,1)∪(2,+∞)
C.(-1,1)∪(3,+∞)
D.(-∞,-3)∪(1,3)
查看答案
集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )
A.0
B.1
C.2
D.4
查看答案
已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
(1)求g(x)的表达式;
(2)设1<m≤e,H(x)=g(x+manfen5.com 满分网)+mlnx-(m+1)x+manfen5.com 满分网,求证:H(x)在[1,m]上为减函数;
(3)在(2)的条件下,证明:对任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.
查看答案
已知函数f(x)=x2+m,其中m∈R.定义数列{an}如下:a1=0,an+1=f(an),n∈N*
(1)当m=1时,求a2,a3,a4的值;
(2)是否存在实数m,使a2,a3,a4构成公差不为0的等差数列?若存在,请求出实数m的值,若不存在,请说明理由;
(3)求证:当manfen5.com 满分网时,总能找到k∈N,使得ak大于2010.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.