满分5 > 高中数学试题 >

已知函数f(x)=x2+lnx-ax在(0,1)上是增函数. (1)求a的取值范...

已知函数f(x)=x2+lnx-ax在(0,1)上是增函数.
(1)求a的取值范围;
(2)设g(x)=e2x-aex-1,x∈[0,ln3],求g(x)的最小值.
(1)求出导函数,据导函数的符号与函数单调性的关系,令导函数大于等于0恒成立,分离出a,利用基本不等式求出函数的最小值,令a小于等于最小值即可得到a的范围. (2)通过函数将函数转化为二次函数,通过对对称轴与定义域位置关系的讨论,分情况求出函数的最小值. 【解析】 (1), ∵f(x)在(0,1)上是增函数, ∴在(0,1)上恒成立, 即恒成立, ∴只需即可. ∴(当且仅当时取等号), ∴ (2)设ex=t,∵x∈[0,ln3],∴t∈[1,3]. 设, 其对称轴为 ,由(1)得, ∴ 则当,即时,h(t)的最小值为 当,即a<2时,h(t)的最小值为h(1)=-a 所以,当时,g(x)的最小值为, 当a<2时,g(x)的最小值为-a
复制答案
考点分析:
相关试题推荐
已知函数f(x)=log4(4x+1)+kx (x∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)-m=0有解,求m的取值范围.
查看答案
已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=manfen5.com 满分网,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.
查看答案
设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)当a=-4时,求A∩B和A∪B;
(2)若(∁RA)∩B=B,求实数a的取值范围.
查看答案
已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若manfen5.com 满分网,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是    (填上你认为正确的序号). 查看答案
定义在R上的函数f(x)满足:manfen5.com 满分网,当x∈(0,4)时,f(x)=x2-1,则f(2010)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.