满分5 > 高中数学试题 >

如图,抛物线C1:y2=8x与双曲线有公共焦点F2,点A是曲线C1,C2在第一象...

如图,抛物线C1:y2=8x与双曲线manfen5.com 满分网有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1.已知点manfen5.com 满分网,过点P作互相垂直且分别与圆M、圆N相交的直线l1和l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t.manfen5.com 满分网是否为定值?请说明理由.
(1)根据抛物线C1的焦点为F2(2,0),得出双曲线C2的焦点为F1(-2,0)、F2(2,0),再设A(x,y)在抛物线C1上,根据|AF2|=5结合抛物线的定义得,x、y的值,最后根据双曲线定义结合点A在双曲线上,得a=1,可求双曲线方程; (2)设圆M的方程为:(x+2)2+y2=r2,根据双曲线的渐近线方程和直线与圆相切的条件,得圆M的半径为,从而求出圆M的方程.过点P作互相垂直且分别与圆M、圆N相交的直线l1和l2,设其中的一条斜率为k,则另一条的斜率为,利用直线的点斜式方程,将直线l1和l2的方程与圆M方程联解,可以得出弦长为s和t关于k的表达式,将其代入进行化简,可以得到定值. 【解析】 (1)∵抛物线C1:y2=8x的焦点为F2(2,0), ∴双曲线C2的焦点为F1(-2,0)、F2(2,0), 设A(x,y)在抛物线C1:y2=8x上,且|AF2|=5, 由抛物线的定义得,x+2=5,∴x=3,∴y2=8×3,∴, ∴, 又∵点A在双曲线上,由双曲线定义得,2a=|7-5|=2,∴a=1, ∴双曲线的方程为:. (2)为定值.下面给出说明. 设圆M的方程为:(x+2)2+y2=r2,双曲线的渐近线方程为:, ∵圆M与渐近线相切,∴圆M的半径为, 故圆M:(x+2)2+y2=3, 显然当直线l1的斜率不存在时不符合题意, 设l1的方程为,即, 设l2的方程为,即, ∴点M到直线l1的距离为,点N到直线l2的距离为, ∴直线l1被圆M截得的弦长, 直线l2被圆N截得的弦长, ∴, 故为定值.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网的图象经过原点,且关于点(-1,1)成中心对称.
(1)求函数f(x)的解析式;
(2)若数列{an}满足an>0,a1=1,manfen5.com 满分网,求数列{an}的通项公式;
(3)在(2)的条件下,设数列{an}的前n项和为Sn,试判断Sn与2的大小关系,并证明你的结论.
查看答案
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
已知等比数列{an}的公比q≠1,a1=32,且2a2、3a3、4a4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,求数列{|bn|}的前n项和Tn
查看答案
manfen5.com 满分网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
查看答案
一个三棱锥S-ABC的三视图、直观图如图.
(1)求三棱锥S-ABC的体积;
(2)求点C到平面SAB的距离;
(3)求二面角S-AB-C的余弦值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.