满分5 > 高中数学试题 >

对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.如...

对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.如果函数f(x)=manfen5.com 满分网有且仅有两个不动点0和2.
(1)试求b、c满足的关系式.
(2)若c=2时,各项不为零的数列{an}满足4Sn•f(manfen5.com 满分网)=1,求证:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(3)设bn=-manfen5.com 满分网,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008
(1)设=x的不动点为0和2,由此知即即且c≠0. (2)由c=2,知b=2,,2Sn=an-an2,且an≠1.所以an-an-1=-1,an=-n,要证待证不等式,只要证,即证,只要证,即证.考虑证不等式(x>0),由此入手能导出<<. (3)由bn=,知Tn=.在中,令n=1,2,3,…,2008,并将各式相加,能得到T2009-1<ln2009<T2008. 【解析】 (1)设=x的不动点为0和2 ∴即即且c≠0 (2)∵c=2∴b=2∴f(x)=, 由已知可得2Sn=an-an2①,且an≠1. 当n≥2时,2Sn-1=an-1-an-12②, ①-②得(an+an-1)(an-an-1+1)=0,∴an=-an-1或an=-an-1=-1, 当n=1时,2a1=a1-a12⇒a1=-1, 若an=-an-1,则a2=1与an≠1矛盾.∴an-an-1=-1,∴an=-n ∴要证待证不等式,只要证, 即证, 只要证,即证. 考虑证不等式(x>0)**. 令g(x)=x-ln(1+x),h(x)=ln(x+1)-(x>0). ∴g'(x)=,h'(x)=, ∵x>0,∴g'(x)>0,h'(x)>0,∴g(x)、h(x)在(0,+∞)上都是增函数, ∴g(x)>g(0)=0,h(x)>h(0)=0,∴x>0时,. 令x=则**式成立,∴<<, (3)由(Ⅱ)知bn=,则Tn=1+ 在中,令n=1,2,3,,2008,并将各式相加, 得<1+. 即T2009-1<ln2009<T2008.
复制答案
考点分析:
相关试题推荐
已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为manfen5.com 满分网的直线交曲线C于另一点An+1(xn+1,yn+1),点列An(n=1,2,3,…)的横坐标构成数列{xn},其中manfen5.com 满分网
(1)求xn与xn+1的关系式;
(2)求证:{manfen5.com 满分网}是等比数列;
(3)求证:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1).
查看答案
若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”,
(1)判断g(x)=sinx和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有 manfen5.com 满分网,设yn=sinxn,求证:manfen5.com 满分网
查看答案
已知函数f(x)=x-alnx,manfen5.com 满分网
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若在[1,e](e=2.718…)上存在一点x,使得f(x)<g(x)成立,求a的取值范围.
查看答案
设函数manfen5.com 满分网为自然对数的底数).
(1)若x≥0时,f(x)≥0恒成立,求a的取值范围;
(2)求证:对于大于1的正整数n,恒有manfen5.com 满分网成立.
查看答案
(文)某企业自2009年1月1日正式投产,环保监测部门从该企业投产之日起对它向某湖区排放污水进行了四个月的跟踪监测,检测的数据如下表.并预测,如果不加以治理,该企业每月向湖区排放污水的量将成等比数列.
月份1月2月3月4月
该企业向湖区排放的污水(单位:立方米)1万2万4万8万
(1)如果不加以治理,求从2009年1月起,m个月后,该企业总计向某湖区排放了多少立方米的污水?
(2)为保护环境,当地政府和企业决定从7月份开始投资安装污水处理设备,预计7月份的污水排放量比6月份减少4万立方米,以后每月的污水排放量均比上月减少4万立方米,当企业停止排放污水后,再以每月16万立方米的速度处理湖区中的污水,请问什么时候可以使湖区中的污水不多于50万立方米?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.