满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2...

manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证; (2),有两种方法可以求点A到平面PBC的距离: 方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求; 方法二,等体积法:连接AC,则三棱锥P-ACB与三棱锥A-PBC体积相等,而三棱锥P-ACB体积易求,三棱锥A-PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求. 【解析】 (1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC. 由∠BCD=90°,得CD⊥BC, 又PD∩DC=D,PD、DC⊂平面PCD, 所以BC⊥平面PCD. 因为PC⊂平面PCD,故PC⊥BC. (2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则: 易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等. 又点A到平面PBC的距离等于E到平面PBC的距离的2倍. 由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC, 因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F. 易知DF=,故点A到平面PBC的距离等于. (方法二)等体积法:连接AC.设点A到平面PBC的距离为h. 因为AB∥DC,∠BCD=90°,所以∠ABC=90°. 从而AB=2,BC=1,得△ABC的面积S△ABC=1. 由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积. 因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC. 又PD=DC=1,所以. 由PC⊥BC,BC=1,得△PBC的面积. 由VA-PBC=VP-ABC,,得, 故点A到平面PBC的距离等于.
复制答案
考点分析:
相关试题推荐
设函数f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范围.
查看答案
已知条件p:|5x-1|>a和条件manfen5.com 满分网,构造命题“若p则q”,并使构造的原命题为真命题,逆命题为假命题.求实数a的取值范围.
查看答案
若直线ax-by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当manfen5.com 满分网+manfen5.com 满分网取最小值时,函数f(x)的解析式是     查看答案
已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=    查看答案
给出以下几个命题:
①若a,b∈R,且ab>0,则|a+b|<|a|+|b|;
②若a>b>0,c<d<0,e<0,则manfen5.com 满分网
③若x,y,z∈R+,则manfen5.com 满分网
④设x∈R+,则manfen5.com 满分网的最小值为8.
其中是真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.