满分5 > 高中数学试题 >

已知函数f(x)=ex-kx, (1)若k=e,试确定函数f(x)的单调区间; ...

已知函数f(x)=ex-kx,
(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;
(3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>manfen5.com 满分网(n∈N+).
(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0,f′(x)<0 (2)f(|x|)是偶函数,只需研究f(x)>0对任意x≥0成立即可,即当x≥0时f(x)min>0 (3)观察结论,要证F(1)F(2)…F(n)>,即证[F(1)F(2)…F(n)]2>(en+1+2)n,变形可得[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n,可证F(1)F(n)>en+1+2,F(2)F(n-1)>en+1+2,F(n)F(1)>en+1+2.问题得以解决. 【解析】 (Ⅰ)由k=e得f(x)=ex-ex,所以f'(x)=ex-e. 由f'(x)>0得x>1,故f(x)的单调递增区间是(1,+∞), 由f'(x)<0得x<1,故f(x)的单调递减区间是(-∞,1). (Ⅱ)由f(|-x|)=f(|x|)可知f(|x|)是偶函数. 于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立. 由f'(x)=ex-k=0得x=lnk. ①当k∈(0,1]时,f'(x)=ex-k>1-k≥0(x>0). 此时f(x)在[0,+∞)上单调递增. 故f(x)≥f(0)=1>0,符合题意. ②当k∈(1,+∞)时,lnk>0. 当x变化时f'(x),f(x)的变化情况如下表: x (0,lnk) lnk (lnk,+∞) f′(x) - + f(x) 单调递减 极小值 单调递增 由此可得,在[0,+∞)上,f(x)≥f(lnk)=k-klnk. 依题意,k-klnk>0,又k>1,∴1<k<e. 综合①,②得,实数k的取值范围是0<k<e. (Ⅲ)∵F(x)=f(x)+f(-x)=ex+e-x,∴F(x1)F(x2)=, ∴F(1)F(n)>en+1+2,F(2)F(n-1)>en+1+2,F(n)F(1)>en+1+2. 由此得,[F(1)F(2)F(n)]2=[F(1)F(n)][F(2)F(n-1)][F(n)F(1)]>(en+1+2)n 故,n∈N*.
复制答案
考点分析:
相关试题推荐
设x,y∈R,向量manfen5.com 满分网,且manfen5.com 满分网
(1)求点M(x,y)的轨迹C的方程;
(2)过点P(0,2)作直线l,交曲线C于A,B两点,又O为坐标原点.若manfen5.com 满分网,求直线l的倾斜角.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案
设函数f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范围.
查看答案
已知条件p:|5x-1|>a和条件manfen5.com 满分网,构造命题“若p则q”,并使构造的原命题为真命题,逆命题为假命题.求实数a的取值范围.
查看答案
若直线ax-by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当manfen5.com 满分网+manfen5.com 满分网取最小值时,函数f(x)的解析式是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.