满分5 > 高中数学试题 >

抛物线y=4x2的焦点到准线的距离为 .

抛物线y=4x2的焦点到准线的距离为   
把抛物线的方程化为标准方程求出p值,即为所求. 【解析】 抛物线y=4x2 即x2=y,∴p=, 即焦点到准线的距离等于 , 故答案为.
复制答案
考点分析:
相关试题推荐
已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是    查看答案
i是虚数单位,复数manfen5.com 满分网的虚部是    查看答案
设f(x)=px-manfen5.com 满分网-2lnx.
(Ⅰ)若f(x)在其定义域内为单调递增函数,求实数p的取值范围;
(Ⅱ)设g(x)=manfen5.com 满分网,且p>0,若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求实数p的取值范围.
查看答案
已知F1,F2是椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的两个焦点,O为坐标原点,点P(-1,manfen5.com 满分网)在椭圆上,且manfen5.com 满分网manfen5.com 满分网=0,⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,并且与椭圆交于不同的两点A,B
(1)求椭圆的标准方程;
(2)当manfen5.com 满分网manfen5.com 满分网=λ,且满足manfen5.com 满分网≤λ≤manfen5.com 满分网时,求弦长|AB|的取值范围.
查看答案
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,manfen5.com 满分网,M、N分别为AB、SB的中点.
(1)证明:AC⊥SB;
(2)(理)求二面角N-CM-B的正切值;
(3)求点B到平面CMN的距离.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.