满分5 > 高中数学试题 >

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f...

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:manfen5.com 满分网
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设manfen5.com 满分网,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设manfen5.com 满分网,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.
(1)化简h(x)=a•f1(x)+b•f2(x),使得与相同,求出a,b判断结果满足题意;类似方法计算判断第二组. (2)设,生成函数化简不等式h(4x)+t•h(2x)<0,在x∈[2,4]上有解,就是求的最大值,即可. (3)由题意得,,则,由于生成函数h(x)图象的最低点坐标为(2,8).故,可求得所以函数.假设存在最大的常数m,使h(x1)h(x2)≥m恒成立.即有,从而转化为求u的最小值即可. 【解析】 (1)①设,即 取,所以h(x)是f1(x),f2(x)的生成函数. ②设a(x2+x)+b(x2+x+1)=x2-x+1,即(a+b)x2+(a+b)x+b=x2-x+1,则,该方程组无解. 所以h(x)不是f1(x),f2(x)的生成函数.…(4分) (2)h(4x)+t•h(2x)<0,即log2(4x)+t•log2(2x)<0 所以,(2+log2x)+t(1+log2x)<0.因为x∈[2,4],所以1+log2x∈[2,3] 则,函数在[2,4]上单调递增,所以 故. …(10分) (3)由题意得,,则, 故,解得所以. …(12分) 假设存在最大的常数m,使h(x1)h(x2)≥m恒成立. 于是设= = 设t=x1x2,则,即 设 因为,所以,在上单调递减,从而 故存在最大的常数m=289…(16分)
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,
∠CDA=∠BAD=90°,manfen5.com 满分网,M,N分别是PD,PB的中点.
(1)求证:MQ∥平面PCB;
(2)求截面MCN与底面ABCD所成二面角的大小;
(3)求点A到平面MCN的距离.

manfen5.com 满分网 查看答案
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

manfen5.com 满分网 查看答案
选修4-5:不等式选讲
设a,b,c均为正实数.
(Ⅰ)若a+b+c=1,求a2+b2+c2的最小值;
(Ⅱ)求证:manfen5.com 满分网
查看答案
选修4-4:参考方程与极坐标
分别在下列两种情况下,把参数方程manfen5.com 满分网化为普通方程:
(1)θ为参数,t为常数;
(2)t为参数,θ为常数.
查看答案
请用逆矩阵的方法求下面二元一次方程组的解manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.