满分5 > 高中数学试题 >

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解...

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求函数f(x)的表达式;
(2)求数列{an}的通项公式;
(3)在各项均不为零的数列{cn}中,若ci•ci+1<0,则称ci,ci+1为这个数列{cn}一对变号项.令manfen5.com 满分网(n为正整数),求数列{cn}的变号项的对数.
(1)由不等式f(x)≤0的解集有且只有一个元素可得△=a2-4a=0,所以a=0或a=4,又在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,所以a=4. (2)由当n≥2时,an=Sn-Sn-1可得an=2n-5,但是必须检验当n=1时,a1=S1=1也符合上式,∴an=. (3)方法一是通过数列{cn}的单调性解答即cn+1-cn=的单调性.方法二解不等式找出数列{cn}的变号项的对数. 【解析】 (1)∵f(x)≤0的解集有且只有一个元素, ∴△=a2-4a=0Þa=0或a=4, 当a=4时,函数f(x)=x2-4x+4在(0,2)上递减, 故存在0<x1<x2,使得不等式f(x1)>f(x2)成立. 当a=0时,函数f(x)=x2在(0,+∞)上递增, 故不存在0<x1<x2,使得不等式f(x1)>f(x2)成立. 综上:a=4,f(x)=x2-4x+4. (2)由(1)可知:Sn=n2-4n+4.当n=1时,a1=S1=1, 当n≥2时,an=Sn-Sn-1=(n2-4n+4)-[(n-1)2-4(n-1)+4]=2n-5, ∴an= (3)法一:由题设cn=, ∵当n≥2时,cn+1-cn=-=, ∴当n≥3时,数列{cn}递增,∵c3=-3<0,又由cn=1-≥0,得n≥5, 可知c4•c5<0,即n≥3时,有且只有一对变号项, 又∵c1=-3,c2=5,c3=-3,即c1•c2<0,c2•c3<0,∴此处有2对变号项. 综上可得:数列{cn}的变号项有3对. 法二:当i≥2时,ci=1-=, ∵ci•ci+1<0,∴•<0, ∴<i<或<i<,∵i≥2,i∈N*,∴i=2或4, 即c2•c3<0,c4•c5<0,此处有2对变号项, 又∵c1=-3,c2=5,即c1•c2<0,此处有一对变号项, 综上可得:数列{cn}的共有3对变号项.
复制答案
考点分析:
相关试题推荐
已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
查看答案
已知函数f(x)=x3+ax2-x+2,(a∈R)
(1)若f(x)在(0,1)上是减函数,求a的最大值;
(2)若f(x)的单调递减区间是manfen5.com 满分网,求函数y=f(x)图象过点(1,1)的切线与两坐标轴围成图形的面积.
查看答案
如图,已知长方体AC1中,AB=BC=1,BB1=2,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F
(1)求证:AC1⊥平面EBD;
(2)求点A到平面A1B1C的距离;
(3)求直线DE与平面A1B1C所成角的正弦值.

manfen5.com 满分网 查看答案
某车间准备从10名工人中选送4人到某生产线工作,工厂规定:这条生产线上熟练工人不得少于3人.已知这10名工人中熟练工人8名,学徒2名,
(1)求工人配置合理的概率;
(2)为了督促安全生产,工人安全部门每月对工人配置合理与否的情况进行三次检查,求其中两次检查得到结果是配置不合理的概率.
查看答案
已知tanθ=-2,求:
(1)tanmanfen5.com 满分网
(2)cos2θ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.