满分5 > 高中数学试题 >

给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“伴随圆”.若椭圆C的一...

给定椭圆manfen5.com 满分网>b>0),称圆心在原点O,半径为manfen5.com 满分网的圆是椭圆C的“伴随圆”.若椭圆C的一个焦点为manfen5.com 满分网,其短轴上的一个端点到F1的距离为manfen5.com 满分网
(1)求椭圆C的方程及其“伴随圆”方程;
(2)若倾斜角为45°的直线l与椭圆C只有一个公共点,且与椭圆C的伴随圆相交于M、N两点,求弦MN的长;
(3)点P是椭圆C的伴随圆上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2
(1)直接由椭圆C的一个焦点为,其短轴上的一个端点到F1的距离为,求出,即可求椭圆C的方程及其“伴随圆”方程; (2)先把直线方程与椭圆方程联立,利用对应的判别式为0求出,进而求出直线方程以及圆心到直线的距离;即可求弦MN的长; (3)先对直线l1,l2的斜率是否存在分两种情况讨论,然后对每一种情况中的直线l1,l2与椭圆C都只有一个公共点进行求解即可证:l1⊥l2.(在斜率存在时,是先设直线方程,把直线与椭圆方程联立,利用斜率为对应方程的根来判断结论). 【解析】 (1)因为,所以b=1(12分) 所以椭圆的方程为, 伴随圆的方程为x2+y2=4.(4分) (2)设直线l的方程y=x+b,由得4x2+6bx+3b2-3=0 由△=(6b)2-16(3b2-3)=0得b2=4(6分) 圆心到直线l的距离为 所以(8分) (3)①当l1,l2中有一条无斜率时,不妨设l1无斜率, 因为l1与椭圆只有一个公共点,则其方程为或, 当l1方程为时,此时l1与伴随圆交于点, 此时经过点(或且与椭圆只有一个公共点的直线是y=1(或y=-1), 即l2为y=1(或y=-1),显然直线l1,l2垂直; 同理可证l1方程为时,直线l1,l2垂直.(10分) ②当l1,l2都有斜率时,设点P(x,y),其中x2+y2=4, 设经过点P(x,y),与椭圆只有一个公共点的直线为y=k(x-x)+y, 由,消去y得到x2+3(kx+(y-kx))2-3=0, 即(1+3k2)x2+6k(y-kx)x+3(y-kx)2-3=0,(12分) △=[6k(y-kx)]2-4•(1+3k2)[3(y-kx)2-3]=0, 经过化简得到:(3-x2)k2+2xyk+1-y2=0, 因为x2+y2=4,所以有(3-x2)k2+2xyk+(x2-3)=0,(14分) 设l1,l2的斜率分别为k1,k2,因为l1,l2与椭圆都只有一个公共点, 所以k1,k2满足方程(3-x2)k2+2xyk+(x2-3)=0, 因而k1•k2=-1,即l1,l2垂直.(16分)
复制答案
考点分析:
相关试题推荐
如图,α⊥β,α∩β=l,A∈α,B∈β,点A在直线l 上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=manfen5.com 满分网,求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1-AB-B1的余弦值.

manfen5.com 满分网 查看答案
甲有一个装有x个红球、y个黑球的箱子,乙有一个装有a个红球、b个黑球的箱子,两人各自从自己的箱子里任取一球,并约定:所取两球同色时甲胜,异色时乙胜(a,b,x,y∈N*).
(Ⅰ)当x=y=3,a=3,b=2,时,求甲获胜的概率;
(Ⅱ)当x+y=6,a=b=3时,规定:甲取红球获胜得3分;取黑球获胜得1分;甲负得0分.求甲的得分期望达到最大时的x,y值;
(Ⅲ)当x=a,y=b时,这个游戏规则公平吗?请说明理由.
查看答案
已知向量manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网=(-cosx,cosx),manfen5.com 满分网=(-1,0).
(Ⅰ)若manfen5.com 满分网,求向量manfen5.com 满分网manfen5.com 满分网的夹角;
(Ⅱ)当manfen5.com 满分网时,求函数manfen5.com 满分网的最大值.
查看答案
manfen5.com 满分网如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于    查看答案
已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.