满分5 > 高中数学试题 >

已知直线与曲线相切. (1)求b的值 (2)若方程f(x)=x2+m在(0,+∞...

已知直线manfen5.com 满分网与曲线manfen5.com 满分网相切.
(1)求b的值
(2)若方程f(x)=x2+m在(0,+∞)上有两个解x1,x2
求:①m的取值范围     ②比较x1x2+9与3(x1+x2)的大小.
(1)先求出导函数f'(x),设出切点(x,y),然后根据在x=x的导数等于切线的斜率,切点在切线和函数f(x)的图象上,建立方程组,解之即可求出b的值; (2)①构造函数 ,利用导数研究函数h(x)的单调性,转化成使h(x)图象在(0,+∞)内与x轴有两个不同的交点,建立关系式,解之即可求出m的范围.②做差比较较x1x2+9与3(x1+x2)的大小. 【解析】 (1)∵,∴f'(x)=x2-b 设切点为(x,y),依题意得 解得:b=3 (2)设 则h'(x)=x2-2x-3=(x+1)(x-3). 1令h'(x)=023,得x=-14或x=35在(0,3)6上,h'(x)<07, 故h(x)在(0,3)上单调递减,在(3,+∞)上,h'(x)>0, 故h(x)在(3,+∞)上单调递增, 若使h(x)图象在(0,+∞)内与x轴有两个不同的交点, 则需,∴-9<m<0 此时存在x>3时,h(x)>0,例如当x=5时,. ∴①所求m的范围是:-9<m<0. ②由①知,方程f(x)=x2+m2在(0,+∞)3上有两个解x1,x2, 满足0<x1<3,x2>3,x1x2+9-3(x1+x2)=(3-x1)(3-x2)<0, x1x2+9<3(x1+x2).
复制答案
考点分析:
相关试题推荐
某公司有价值a万元的一条生产流水线,要提高该生产流水线的生产能力,就要对其进行技术改造,改造就需要投入资金,相应就要提高生产产品的售价.假设售价y万元与技术改造投入x万元之间的关系满足:
①y与a-x和x的乘积成正比;②manfen5.com 满分网y=a2
manfen5.com 满分网其中t为常数,且t∈[0,1].
(1)设y=f(x),试求出f(x)的表达式,并求出y=f(x)的定义域;
(2)求出售价y的最大值,并求出此时的技术改造投入的x的值.
查看答案
已知,在水平平面α上有一长方体AC1绕BC旋转90°得到如图1所示的几何体.
(Ⅰ)证明:平面BCD1A1⊥平面BCD2A2
(Ⅱ)当BC=1时,且长方体AC1体积为4时,求四棱锥A1-BCD2A2体积的最小值.

manfen5.com 满分网 查看答案
从2、4、8、16、32、64、128、256这8个数中任取三个数,共有56种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同).
(Ⅰ)求取出的三个数能够组成等比数列的概率;
(Ⅱ)求取出的三个数的乘积为1024的概率.
查看答案
如图,圆C1:(x-a)2+y2=r2(r>0)与抛物线C2:x2=2py(p>0)的一个交点M(2,1),且抛物线在点M处的切线过圆心C1
(Ⅰ)求C1和C2的标准方程;
(Ⅱ)若点N为圆C1上的一动点,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
已知数列{an}中,a1=1,前n项和sn满足sn+1-sn=2n+1(n∈N*).
(Ⅰ)求数列{an}的通项公式及前n项和sn
(Ⅱ)若S1、t(S3+S4)(t>0)的等差中项不大于它们的等比中项,求t的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.