(1)先根据a3=2,a6=8求出公差,再代入a3=2,求出首项,即可求数列{an}的通项公式;
(2)先求出bn的表达式,代入数列{anbn}的前n项和,再利用错位相减法即可求出数列{anbn}的前n项和.
【解析】
(1)设公差为d,则a6-a3=3d=6,
∴d=2.
∵a3=a1+2d=a1+4=2.
∴a1=-2.
∴an=a1+(n-1)d=2n-4.
(2)∵bn==2n-2.
∴Sn=a1b1+a2b2+…+an-1bn-1+anbn ①
2Sn=a1b2+a2b3+…+an-1bn+anbn+1 ②
①-②:得-Sn=a1b1+(a2-a1)b2+…+(an-an-1)bn-anbn+1
=-2×+2(1+2+…+2n-2)-(2n-4)•2n-1
=-3-(n-3)•2n;
∴Sn=3+(n+3)•2n