满分5 > 高中数学试题 >

已知向量m=(,),n=(,),记f(x)=m•n; (1)若f(x)=1,求的...

已知向量m=(manfen5.com 满分网manfen5.com 满分网),n=(manfen5.com 满分网manfen5.com 满分网),记f(x)=m•n;
(1)若f(x)=1,求manfen5.com 满分网的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
(1)先根据两角和与差的正弦公式将函数f(x)化简为y=Asin(wx+ρ)+b的形式,根据f(x)=1求出sin(),再由二倍角公式求出答案. (2)先根据正弦定理将边的关系转化为角的正弦的关系,再由诱导公式求出cosB得到角B的值,从而可确定角A的范围,再求出范围,得到f(A)的取值范围. 【解析】 (1)f(x)=m•n=sin==sin()+, ∵f(x)=1,∴sin()=, ∴cos(x+)=1-2=. (2)∵(2a-c)cosB=bcosC,∴由正弦定理得(2sinA-sinC)cosB=sinBcosC, ∴2sinAcosB-sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C), ∵A+B+C=π,,∴sin(B+C)=sinA,且sinA≠0, ∴cosB=,B=; ∴0<A<,∴, ∴,; 又∵f(x)=sin()+,∴f(A)=sin()+, 故函数f(A)的取值范围是(1,).
复制答案
考点分析:
相关试题推荐
设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(1+t)=f(1-t),且x∈[0,1]时,f(x)=-x2,则manfen5.com 满分网的值等于    查看答案
在直角坐标平面内,已知点列P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),…如果k为正偶数,则向量manfen5.com 满分网的纵坐标(用k表示)为    查看答案
已知离心率为manfen5.com 满分网的双曲线manfen5.com 满分网的左焦点与抛物线y2=2mx的焦点重合,则实数m=    查看答案
已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为    查看答案
已知集合A={x||2x-1|≤3},B=(-3,a),若A∩B=A,则实数a的取值集合是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.