满分5 > 高中数学试题 >

已知函数f(x)=alnx+x2(a为实常数). (1)若a=-2,求证:函数f...

已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
(1)当a=-2时故函数 在(1,+∞)上是增函数. (2),当x∈[1,e],2x2+a∈[a+2,a+2e2].若a≥-2,f'(x)在[1,e]上非负,故函数f(x)在[1,e]上是增函数. 若-2e2<a<-2,当时f'(x)=0,当时,f'(x)<0,此时f(x)是减函数; 当时,f'(x)>0,此时f(x)是增函数. 所以此时有最值.若a≤-2e2,f'(x)在[1,e]上非正,所以[f(x)]min=f(e)=a+e2. (3)由题意可化简得(x∈[1,e]),令(x∈[1,e]),利用导数判断其单调性求出最小值为g(1)=-1. 【解析】 (1)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞),, (2),当x∈[1,e],2x2+a∈[a+2,a+2e2]. 若a≥-2,f'(x)在[1,e]上非负(仅当a=-2,x=1时,f'(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1. 若-2e2<a<-2,当时,f'(x)=0; 当时,f'(x)<0,此时f(x)是减函数;  当时,f'(x)>0,此时f(x)是增函数. 故[f(x)]min==. 若a≤-2e2,f'(x)在[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0), 故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2. 综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1;当-2e2<a<-2时,f(x) 的最小值为,相应的x值为;当a≤-2e2时,f(x)的最小值为a+e2, 相应的x值为e. (3)不等式f(x)≤(a+2)x,可化为a(x-lnx)≥x2-2x. ∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x-lnx>0, 因而(x∈[1,e]) 令(x∈[1,e]),又, 当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0, 从而g'(x)≥0(仅当x=1时取等号),所以g(x)在[1,e]上为增函数, 故g(x)的最小值为g(1)=-1,所以a的取值范围是[-1,+∞).
复制答案
考点分析:
相关试题推荐
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC-B是直二面角.
(1)证明:BE⊥CD’;
(2)求直线EC与面D'BC的余弦值.

manfen5.com 满分网 查看答案
设数列{an}的前n项的和为Sn,已知manfen5.com 满分网
(1)求S1,S2及Sn
(2)设manfen5.com 满分网,若对一切n∈N*,均有manfen5.com 满分网,求实数m的取值范围.
查看答案
△ABC中,角A、B、C所对应的边分别为a、b、c,若manfen5.com 满分网
(1)求角A;
(2)若f(x)=cos2(x+A)-sin2(x-A),求f(x)的单调递增区间.
查看答案
将正整数按表的规律排列,把行与列交叉处的那个数称为某行某列的数,记作a(i,j)(i,j∈N*),如第2行第4列的数是15,记作a(2,4)=15,则有序数对(a(12,8),a(8,4))是   
manfen5.com 满分网 查看答案
按一次电视机遥控器上的电源开关,电视机可能出现以下三种情况:由原来的关机状态转为开机状态;由原来的开机状态转为关机状态;电视机保持原来的状态不变.由于电视机从关机状态转为开机状态要等待一段时间,一台电视机处于关机状态时,某人连续按了4次电源开关,结果使电视转为开机的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.