如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
( I)求证:求证AF⊥CD;
(II)求多面体ABCDE的体积.
考点分析:
相关试题推荐
已知α为锐角,且
.
(I)求tanα的值;
(II) 求函数f(x)=sinαcos2x-cosαsin2x(
)的最大值和最小值.
查看答案
关于某港口今后20年的发展规划,有如下两种方案:
方案甲:按现状进行运营.据测算,每年可收入760万元,但由于港口淤积日益严重,从明年开始需投资进行清淤,第一年投资50万元,以后逐年递增20万元.
方案乙:从明年起开始投资6000万元进行港口改造,以彻底根治港口淤积并提高吞吐能力.港口改造需用时4年,在此期间边改造边运营.据测算,开始改造后港口第一年的收入为320万元,在以后的3年中,每年收入都比上一年增长50%,而后各年的收入都稳定在第4年的水平上.
(I)从明年开始至少经过多少年,方案乙能收回投资(累计总收益为正数)?
(II)从明年开始至少经过多少年,方案乙的累计总收益超过方案甲?(注:收益=收入-投资)
查看答案
已知真命题:过椭圆
左顶点A(-a,0)作两条互相垂直的直线,分别交椭圆于另外两点M、N,则直线MN过定点
.类比此命题,写出关于抛物线y
2=2px(p>0)的一个真命题:
.
查看答案
关于直线m,n与平面α,β,有以下四个命题:
①若m∥a,n∥β且a∥β,则m∥n;②若m⊥a,n⊥β且a⊥β,则m⊥n;
③若m⊥a,n∥β且a∥β,则m⊥n;④若m∥a,n⊥β且a⊥β,则m∥n.
其中真命题的序号是
.
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c,若S表示△ABC的面积,若acosB+bcosA=csinC,
,则∠B=
.
查看答案