满分5 > 高中数学试题 >

已知数列{an}是首项为,公比的等比数列,设,数列{cn}满足cn=an•bn....

已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
(1)根据等比数列的通项公式可求得an,代入求得bn+1-bn为常数,进而判断出数列{bn}是等差数列. (2)由(1)可分别求得an和bn,进而求得Cn进而用错位相减法进行求和. (3)把(2)中的Cn,代入Cn+1-Cn结果小于0,进而判断出当n≥2时,Cn+1<Cn,进而可推断出当n=1时,Cn取最大值,问题转化为≥,求得m的取值范围. 【解析】 (1)由题意知,an=()n. ∵, ∴b1=1 ∴bn+1-bn=3an+1=3an=3=3q=3 ∴数列{bn}是首项为1,公差为3的等差数列. (2)由(1)知,an=()n.bn=3n-2 ∴Cn=(3n-2)×()n. ∴Sn=1×+4×()2+…+(3n-2)×()n, 于是Sn=1×()2+4×()3+…(3n-2)×()n+1, 两式相减得Sn=+3×[()2+()3+…+()n)-(3n-2)×()n+1, =-(3n-2)×()n+1, ∴Sn=-()n+1 (3)∵Cn+1-Cn=(3n+1)×()n+1-(3n-2)×()n=9(1-n)×()n+1, ∴当n=1时,C2=C1= 当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn ∴当n=1时,Cn取最大值是 又 ∴≥ 即m2+4m-5≥0解得m≥1或m≤-5.
复制答案
考点分析:
相关试题推荐
已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数f (x)=manfen5.com 满分网sinxcosx-2cos2x+1.
(Ⅰ)求f (manfen5.com 满分网);
(Ⅱ)求函数f (x)图象的对称轴方程.
查看答案
给出下列四个命题:
①若集合A,B满足A∩B=A,则A⊆B;
②给定命题p,q,若“p∨q”为真,则“p∧q”为真;
③设a,b,m∈R,若a<b,则am2<bm2
④若直线l1:ax+y+1=0与直线l2:x-y+1=0垂直,则a=1.其中真命题的个数是     .(写出所有真命题的个数) 查看答案
已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.