满分5 > 高中数学试题 >

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0). (I)若f(x)...

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
(I)先判定点(1,0)与函数f(x),g(x)的图象的位置关系,然后分别求出在x=1处的导数,根据函数f(x),g(x)的图象在点(1,0)处有公共的切线,建立等量关系,求出a的值; (II)先求出F(x)的解析式和定义域,然后在定义域内研究F(x)的导函数,讨论a的正负,分别判定F'(x)=0的值附近的导数符号,确定极值. 【解析】 (I)因为f(1)=0,g(1)=0, 所以点(1,0)同时在函数f(x),g(x)的图象上(1分) 因为f(x)=x2-1,g(x)=alnx,f'(x)=2x,(3分)(5分) 由已知,得f'(1)=g'(1),所以,即a=2(6分) (II)因为F(x)=f(x)-2g(x)=x2-1-2alnx(x>0)(7分) 所以(8分) 当a<0时,因为x>0,且x2-a>0,所以F'(x)>0对x>0恒成立, 所以F(x)在(0,+∞)上单调递增,F(x)无极值(10分) 当a>0时,令F'(x)=0,解得(舍)(11分) 所以当x>0时,F'(x),F(x)的变化情况如下表: (13分) 所以当时,F(x)取得极小值,且.(14分) 综上,当a<0时,函数F(x)在(0,+∞)上无极值; 当a>0时,函数F(x)在处取得极小值a-1-alna.
复制答案
考点分析:
相关试题推荐
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数f (x)=manfen5.com 满分网sinxcosx-2cos2x+1.
(Ⅰ)求f (manfen5.com 满分网);
(Ⅱ)求函数f (x)图象的对称轴方程.
查看答案
给出下列四个命题:
①若集合A,B满足A∩B=A,则A⊆B;
②给定命题p,q,若“p∨q”为真,则“p∧q”为真;
③设a,b,m∈R,若a<b,则am2<bm2
④若直线l1:ax+y+1=0与直线l2:x-y+1=0垂直,则a=1.其中真命题的个数是     .(写出所有真命题的个数) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.