满分5 > 高中数学试题 >

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点. (1)...

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

manfen5.com 满分网
(1)先证BD⊥面ACE,从而证得:B1D1⊥AE; (2)作BB1的中点F,连接AF、CF、EF.由E、F是CC1、BB1的中点,易得AF∥ED,CF∥B1E,从而平面ACF∥面B1DE.证得AC∥平面B1DE; (3)易知底为面ABD,高为EC,由体积公式求得三棱锥A-BDE的体积. 【解析】 (1)证明:连接BD,则BD∥B1D1,(1分) ∵ABCD是正方形,∴AC⊥BD.∵CE⊥面ABCD,∴CE⊥BD. 又AC∩CE=C,∴BD⊥面ACE.(4分) ∵AE⊂面ACE,∴BD⊥AE, ∴B1D1⊥AE.(5分) (2)证明:作BB1的中点F,连接AF、CF、EF. ∵E、F是CC1、BB1的中点,∴CEB1F, ∴四边形B1FCE是平行四边形, ∴CF∥B1E.(7分) ∵E,F是CC1、BB1的中点,∴, 又,∴. ∴四边形ADEF是平行四边形,∴AF∥ED, ∵AF∩CF=F,B1E∩ED=E, ∴平面ACF∥面B1DE.(9分) 又AC⊂平面ACF,∴AC∥面B1DE.(10分) (3)(文). (11分) .(14分) (理)∵AC∥ 面B1DE ∴ A 到面B1DE 的距离=C到面B1DE 的距离(11分) ∴ (14分)
复制答案
考点分析:
相关试题推荐
随着机构改革开作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的manfen5.com 满分网,为获得最大的经济效益,该公司应裁员多少人?
查看答案
已知manfen5.com 满分网
(Ⅰ)求tanx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
已知 p:f(x)=manfen5.com 满分网,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数、有下列函数:①f(x)=sin 2x;②g(x)=x3;③h(x)=(manfen5.com 满分网x;④φ(x)=ln x,其中是一阶整点函数的是     查看答案
设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.