满分5 > 高中数学试题 >

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD...

manfen5.com 满分网如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D-ABC的体积.
(Ⅰ)解法一:由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD; 解法二:证得AC⊥BC后,由面面垂直,得线面垂直,即证. (Ⅱ),由高和底面积,求得三棱锥B-ACD的体积即是几何体D-ABC的体积. 【解析】 (Ⅰ) 【解法一】:在图1中,由题意知,,∴AC2+BC2=AB2,∴AC⊥BC 取AC中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC, 且平面ADC∩平面ABC=AC,DO⊂平面ACD,从而OD⊥平面ABC, ∴OD⊥BC 又AC⊥BC,AC∩OD=O, ∴BC⊥平面ACD 【解法二】:在图1中,由题意,得,∴AC2+BC2=AB2,∴AC⊥BC ∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂面ABC,∴BC⊥平面ACD (Ⅱ)由(Ⅰ)知,BC为三棱锥B-ACD的高,且,S△ACD=×2×2=2, 所以三棱锥B-ACD的体积为:, 由等积性知几何体D-ABC的体积为:.
复制答案
考点分析:
相关试题推荐
设AB=6,在线段AB上任取两点(端点A、B除外),将线段AB分成了三条线段,
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,向量manfen5.com 满分网,n=(sinA,-1),且m⊥n.
(Ⅰ)求角A的大小;(Ⅱ)若a=2,manfen5.com 满分网,求b的值.
查看答案
manfen5.com 满分网 AB为圆O的直径,AC切圆O于点A,且AC=2manfen5.com 满分网cm,过C的割线CMN交AB的延长线于D,CM=MN=ND.则AD的长等于    cm. 查看答案
若直线3x+4y+m=0与曲线manfen5.com 满分网(θ为参数)没有公共点,则实数m的取值范围是     查看答案
如图所示,这是计算manfen5.com 满分网的值的一个程序框图,其中判断框内应填入的条件是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.