满分5 > 高中数学试题 >

(1)在伸缩变换下圆x2+y2=1变为曲线C.求曲线C的方程,并指出曲线的类型;...

(1)在伸缩变换manfen5.com 满分网下圆x2+y2=1变为曲线C.求曲线C的方程,并指出曲线的类型;当曲线C的动点M到直线L:manfen5.com 满分网距离的最大值时,求点M的坐标.
(2)设函数f(x)=|x+1|+|x-a|(a>0).
①作出函数f(x)的图象;
②若不等式f(x)≥5的解集为(-∞,-2]∪[3,+∞),求a值.
(1)利用伸缩变换求出曲线C的方程,根据ρsinθ=y,ρcosθ=x,把极坐标方程化为普通方程得到直线l的方程,设出曲线C参数方程一点坐标,利用点到直线的距离公式表示出P到直线l的距离d,利用两角和的余弦函数公式化为一个角的余弦函数,根据余弦函数的值域即可求出d的最大值. (2)①根据题意,化简绝对值可得,函数f(x)=|x+1|+|x-a|=,进而做出其图象. ②由题设知:|x+1|+|x-a|≥5,在同一坐标系中作出函数y=5的图象,当x=-2或3时,f(x)=5,且a+1<5即a<4,由f(-2)=5 求得 a 的值. 【解析】 (1)由得代入x2+y2=1 即曲线C:. 该曲线是椭圆.其参数方程为:(θ为参数) 设椭圆C上动点M 到直线L:的距离为 =. 当时,曲线C的动点M到直线L的距离最大,此时…(7分) (2)①f(x)=|x+1|+|x-a|=, 函数f(x)如图所示. ②由题设知:|x+1|+|x-a|≥5, 如图,在同一坐标系中作出函数y=5的图象 (如图所示) 又解集为(-∞,-2]∪[3,+∞). 由题设知,当x=-2或3时,f(x)=5 且a+1<5即a<4, 由f(-2)=-2(-2)-1+a=5得:a=2.
复制答案
考点分析:
相关试题推荐
已知:函数f(x)=-x(x-a)2  (a∈R)
(1)求a=1时曲线y=f(x)在点(2,f(2))处的切线方程
(2)当a<0时,求函数f(x)的极小值
(3)是否存在实数a,使得f(x)在[-1,1]上单调递增.若存在求出a,若不存在请说明理由.
查看答案
已知双曲线manfen5.com 满分网的离心率e=2,且B1、B2分别是双曲线虚轴的上、下端点.
(Ⅰ)若双曲线过点Q(2,manfen5.com 满分网),求双曲线的方程;
(Ⅱ)在(Ⅰ)的条件下,若A、B是双曲线上不同的两点,且manfen5.com 满分网,求直线AB的方程.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当manfen5.com 满分网且E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案
甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人合格的概率都是manfen5.com 满分网,且面试是否合格互不影响.求:
(I)至少有一人面试合格的概率;
(Ⅱ)没有人签约的概率.
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,向量manfen5.com 满分网=(cos manfen5.com 满分网,cos(π-A)-1),manfen5.com 满分网=(2cos(manfen5.com 满分网-A),2sin manfen5.com 满分网),且manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小.
(2)设f(x)=cos2x+2sinAsinxcosx,求f(x)的最小正周期,求当 x manfen5.com 满分网时f(x)的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.