满分5 > 高中数学试题 >

设. (I)求f(x)的单调区间与极值; (II)求方程f(x)=0的实数解的个...

manfen5.com 满分网
(I)求f(x)的单调区间与极值;
(II)求方程f(x)=0的实数解的个数.
(I)利用函数的求导公式求出函数的导数,根据导数求函数的单调性和极值. (II)由于,所以,.再进行分类讨论. 【解析】 (I)f'(x)=2x2-2,由f'(x)=2x2-2=0得 x=-1或x=1. x (-∞,-1) -1 (-1,1) 1 (1,+∞) f'(x) + -- + f(x) 单增 极大值 单减 极小值 单增 所以,f(x)的单调递增区间为(-∞,-1)和(1,+∞),单调递减区间为(-1,1); 极大值为,极小值为. (II)由于,所以,. ①当时,f(-1)=0,即x=-1是方程f(x)=0的一个解. 又因为, 所以,方程f(x)=0在(1,3)内至少有一个解.根据函数f(x)单调性可知,方程f(x)=0有两个不同的解. ②当时,,即x=1是方程f(x)=0的一个解. 又因为, 所以方程f(x)=0在(-3,-1)内至少有一个解.根据函数f(x)单调性可知,方程f(x)=0有两个不同的解. ③当时,,,所以方程f(x)=0在(-1,1)内至少有一个解.又由f(-3)=m-12<0,知方程f(x)=0在(-3,-1)内至少有一个解;由f(3)=12+m>0,知方程f(x)=0在(1,3)内至少有一个解.根据函数f(x)单调性可知,方程f(x)=0有三个不同的解.
复制答案
考点分析:
相关试题推荐
如图,椭圆manfen5.com 满分网的左顶点、右焦点分别为A,F,直线l的方程为x=9,N为l上一点,且在x轴的上方,AN与椭圆交于M点
(1)若M是AN的中点,求证:MA⊥MF.
(2)过A,F,N三点的圆与y轴交于P,Q两点,求|PQ|的范围.

manfen5.com 满分网 查看答案
已知数列manfen5.com 满分网,且manfen5.com 满分网
(I)求证:数列manfen5.com 满分网是等差数列,并求an
(II)令manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
某社区举办2011年西安世园会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世园会会徽”或“长安花”(世园会吉祥物)图案,参加者从盒中一次抽取卡片两张,记录后放回.若抽到两张都是“长安花”卡即可获奖.
(Ⅰ)活动开始后,一位参加者问:盒中有几张“长安花”卡?主持人说:我只知道若从盒中抽两张都不是“长安花”卡的概率是manfen5.com 满分网,求抽奖者获奖的概率;
(Ⅱ)现有甲、乙、丙、丁四人每人抽奖一次,用ξ表示获奖的人数,求ξ的分布列及Eξ.
查看答案
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在直线A1B1上,且满足manfen5.com 满分网
(1)证明:PN⊥AM;
(2)若平面PMN与平面ABC所成的角为45°,试确定点P的位置.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象如图所示.
(Ⅰ)求ω,φ的值;
(Ⅱ)设g(x)=f(x)f(x-manfen5.com 满分网),求函数g(x)的单调递增区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.