满分5 > 高中数学试题 >

设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且. ...

设椭圆manfen5.com 满分网的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值.

manfen5.com 满分网
(Ⅰ)由焦点坐标可求得c,进而根据求得a,进而求得b,则椭圆方程可得. (Ⅱ)先看当直线DE和直线MN与x轴垂直时,可求得四边形DMEN的面积;进而看直线DE,MN均与x轴不垂直时,设DE的直线方程与椭圆方程联立消去y,设D(x1,y1),E(x2,y2),进而利用韦达定理可得x1x2和x1+x2,进而可表示出|DE|,同理可表示出|MN|进而可表示出四边形的面积,进而根据均值不等式求得四边形的面积的范围,则最大值和最小值可得. 【解析】 (Ⅰ)由题意,,∴A(a2,0), ∵∴F2为AF1的中点 ∴a2=3,b2=2 即椭圆方程为. (Ⅱ)当直线DE与x轴垂直时,|DE|=, 此时,四边形DMEN的面积为. 同理当MN与x轴垂直时,也有四边形DMEN的面积为. 当直线DE,MN均与x轴不垂直时,设DE:y=k(x+1),代入椭圆方程,消去y得:(2+3k2)x2+6k2x+(3k2-6)=0. 设D(x1,y1),E(x2,y2),则 所以,, 所以,, 同理,|MN|=. 所以,四边形的面积S===, 令,得 因为, 当k=±1时,,且S是以u为自变量的增函数, 所以. 综上可知,.即四边形DMEN面积的最大值为4,最小值为.
复制答案
考点分析:
相关试题推荐
甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成中随机抽取8次,记录如下
甲:82,91,79,78,95,88,83,84;乙:92,95,80,75,83,80,90,85.
(1)画出甲、乙两位学生成绩的茎叶图;
(2)现要从中选派一人参加数学竞赛,从统计学角度,你认为派哪位学生参加合请说明理由.
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
查看答案
如图,已知△AOB,∠AOB=manfen5.com 满分网,∠BAO=θ,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记二面角B-AO-C的大小为manfen5.com 满分网
(Ⅰ) 当平面COD⊥平面AOB时,求θ的值;
(Ⅱ) 当manfen5.com 满分网∈[manfen5.com 满分网,θ]时,求二面角C-OD-B的余弦值的取值范围.

manfen5.com 满分网 查看答案
在锐角△ABC中,A、B、C三内角所对的边分别为a、b、c.设manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若b=3,求△ABC的面积;
(Ⅱ)求b+c的最大值.
查看答案
已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命题
①若f1(x)=manfen5.com 满分网则f1(x)∈M;
②若f2(x)=2x,则f2(x)∈M;
③若f3(x)∈M,则y=f3(x)的图象关于原点对称;
④若f4(x)∈M则对于任意不等的实数x1,x2,总有manfen5.com 满分网<0成立.
其中所有正确命题的序号是    查看答案
已知数列{an}满足:an=logn+1(n+2)(n∈N+),定义使a1•a2•a3…ak为整数的数k(k∈N+)叫做幸运数,则k∈[1,2011]内所有的幸运数的和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.