满分5 > 高中数学试题 >

已知函数f(x)=(2-a)(x-1)-2lnx. (I)当a=1时,求f(x)...

已知函数f(x)=(2-a)(x-1)-2lnx.
(I)当a=1时,求f(x)的单调区间;
(II)若函数manfen5.com 满分网的最小值;
(III)若0<n<m,求证:manfen5.com 满分网
(I)代入a的值,写出函数的解析式,对函数求导,使得导函数大于0,求出自变量的值,写出单调区间. (II)根据函数无零点,得到函数的导函数小于0在一个区间上不恒成立,得到函数在这个区间上没有零点,构造新函数,对函数求导,利用求最值得方法求出函数的最小值. (III)要证明不等式成立,由第(I)问可知f(x)=(x-1)-2lnx在(0,1]上单调递减,得到两个自变量的函数值之间的关系,整理出结果. 【解析】 (I)当a=1时,f(x)=x-1-2lnx,,(1分) 由f'(x)>0,得x>2; 由f'(x)<0,得0<x<2.(3分) 故f(x)的单调减区间为(0,2],单调增区间为[2,+∞)(4分) (II)因为上恒成立不可能, 故要使函数上无零点, 只要对任意的恒成立, 即对恒成立.(6分) 令, 则,(7分) , 综上,若函数,则a的最小值为2-4ln2.(9分) (III)证明:由第(I)问可知f(x)=(x-1)-2lnx在(0,1]上单调递减. ∵,∴(12分) ∴∴, 即(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,数列{an}满足an=f(an-1)(n≥2,n∈N+).
(Ⅰ)若manfen5.com 满分网,数列{bn}满足manfen5.com 满分网,求证:数列{bn}是等差数列;
(Ⅱ)若manfen5.com 满分网,数列{an}中是否存在最大项与最小项,若存在,求出最大项与最小项;若不存在,说明理由;
(Ⅲ)若1<a1<2,试证明:1<an+1<an<2.
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3).
(Ⅰ)求椭圆C和直线l的方程;
(Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线x2-2mx+y2+4y+m2-4=0与D有公共点,试求实数m的最小值.
查看答案
在如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(I)求证:DF∥平面ABC;
(II)求证:平面DBE⊥平面ABE;
(III)求直线BD和平面ACDE所成角的余弦值.

manfen5.com 满分网 查看答案
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如图所示,且甲学生的平均分为85分.
(Ⅰ)观察茎叶图,求图中的x
(Ⅱ)若要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理
由;
(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,满足manfen5.com 满分网,且△ABC的面积为2.
(Ⅰ)求bc的值;
(Ⅱ)若b+c=6,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.