满分5 > 高中数学试题 >

已知全集U=R,集合A={x|2x>1},,则A∩(CUB)=( ) A.{x|...

已知全集U=R,集合A={x|2x>1},manfen5.com 满分网,则A∩(CUB)=( )
A.{x|x>1}
B.{x|0<x<1}
C.{x|0<x≤1}
D.{x|x≤1}
通过解不等式结合函数的性质,求出集合A、B,然后求解A∩CUB即可. 【解析】 由于2x>1⇒x>0; ⇒x>1. 分别把两个集合表示为A={x|x>0},B={x|x>1}, 所以CUB={x|x≤1}, A∩(CUB)={x|0<x≤1}. 故选C.
复制答案
考点分析:
相关试题推荐
选修4-5《不等式选讲》.
已知a+b=1,对∀a,b∈(0,+∞),使manfen5.com 满分网+manfen5.com 满分网≥|2x-1|-|x+1|恒成立,求x的取值范围.
查看答案
已知直线l的极坐标方程为ρ(sinθ+cosθ)=1,曲线C的参数方程为manfen5.com 满分网(θ为参数).
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B四两点,原点为O,求△ABO的面积.
查看答案
已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.

manfen5.com 满分网 查看答案
设函数f(x)=px-manfen5.com 满分网-2lnx,且f(e)=pe-manfen5.com 满分网-2,(其中e=2.1828…是自然对数的底数).
(1)求p与q的关系;
(2)若f(x)在其定义域内为单调函数,求p的取值范围;
(3)设manfen5.com 满分网,若在[1,e]上存在实数x,使得f(x)>g(x)成立,求实数p的取值范围.
查看答案
已知椭圆manfen5.com 满分网的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.
(I)求椭圆方程;
(II)若C,D分别是椭圆长轴的左右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.求证:manfen5.com 满分网为定值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.