满分5 > 高中数学试题 >

已知函数f(x)=(1+)ex,其中a>0. (Ⅰ)求函数f(x)的零点; (Ⅱ...

已知函数f(x)=(1+manfen5.com 满分网)ex,其中a>0.
(Ⅰ)求函数f(x)的零点;
(Ⅱ)讨论y=f(x)在区间(-∞,0)上的单调性;
(Ⅲ)在区间(-∞,-manfen5.com 满分网]上,f(x)是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
(Ⅰ)欲求函数f(x)的零点,先求出f(x)=0的解,即可得到函数f(x)的零点; (Ⅱ)先确定函数的定义域然后求导数fˊ(x),在定义域内求出f′(x)=0的值x1=,再讨论点x1=附近的导数的符号的变化情况,从而得到函数f(x)的单调区间; (Ⅲ)先利用作差法比较x1与-a的大小,从而得到x1<-a<-<0,又函数在(x1,0)上是减函数,则函数在区间(-∞,-]上的最小值为f(-),求出f(-)即可. 【解析】 (Ⅰ)f(x)=0,得x=-a,所以函数f(x)的零点为-a.(2分) (Ⅱ)函数f(x)在区域(-∞,0)上有意义,f′(x)=,(5分) 令f′(x)=0,得x1=,x2=, 因为a>0,所以x1<0,x2>0.(7分) 当x在定义域上变化时,f'(x)的变化情况如下: 所以在区间(-∞,)上f(x)是增函数,(8分) 在区间(,0)上f(x)是减函数.(9分) (Ⅲ)在区间(-∞,-]上f(x)存在最小值f(-).(10分) 证明:由(Ⅰ)知-a是函数f(x)的零点, 因为-a-x1=-a-=>0, 所以x1<-a<0,(11分) 由知,当x<-a时,f(x)>0,(12分) 又函数在(x1,0)上是减函数,且x1<-a<-<0, 所以函数在区间(-x1,-]上的最小值为f(-),且f(-)<0,(13分) 所以函数在区间(-∞,-]上的最小值为f(-), 计算得f(-)=-.(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2manfen5.com 满分网,点manfen5.com 满分网在该椭圆上.
(1)求椭圆C的方程;
(2)设椭圆C上的一点p在第一象限,且满足PF1⊥PF2,⊙O的方程为x2+y2=4.求点p坐标,并判断直线pF2与⊙O的位置关系;
(3)设点A为椭圆的左顶点,是否存在不同于点A的定点B,对于⊙O上任意一点M,都有manfen5.com 满分网为常数,若存在,求所有满足条件的点B的坐标;若不存在,说明理由.
查看答案
已知一几何体的三视图如图(甲)示,(三视图中已经给出各投影面顶点的标记)
(1)在已给出的一个面上(图乙),画出该几何体的直观图;
(2)设点F、H、G分别为AC,AD,DE的中点,
求证:FG∥平面ABE;
(3)求该几何体的全面积.

manfen5.com 满分网 查看答案
某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
树干周长(单位:cm)[30,40)[40,50)[50,60)[60,70)
株数418x6
(1)求x的值;
(2)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.
查看答案
如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西
60°的方向前进了40m以后,在点D处望见塔的底端B在东北方向上,已
知沿途塔的仰角∠AEB=a,a的最大值为30°,求塔的高.

manfen5.com 满分网 查看答案
(坐标系与参数方程选做题) 若直线manfen5.com 满分网与曲线manfen5.com 满分网(ϕ为参数,a>0)有两个公共点A,B,且|AB|=2,则实数a的值为    ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.