满分5 > 高中数学试题 >

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a...

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:manfen5.com 满分网
(1)由题设条件知.,bn=2-2Sn,bn-bn-1=-2(Sn-Sn-1)=-2bn.,由此可求出数列{bn}的通项公式. (2)数列{an}为等差数列,公差,可得an=3n-1.从而,由此能证明数列{cn}的前n项和. 【解析】 (1)由bn=2-2Sn,令n=1,则b1=2-2S1,又S1=b1, 所以.b2=2-2(b1+b2),则.. 当n≥2时,由bn=2-2Sn,可得bn-bn-1=-2(Sn-Sn-1)=-2bn.即.. 所以{bn}是以为首项,为公比的等比数列,于是. (2)数列{an}为等差数列,公差,可得an=3n-1. 从而cn=an•bn=2(3n-1)• ∴=.
复制答案
考点分析:
相关试题推荐
某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持manfen5.com 满分网米的距离,其中a为常数且manfen5.com 满分网,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒).
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.
查看答案
如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(Ⅰ)求证:AM⊥平面EBC;
(Ⅱ)求直线AB与平面EBC所成的角的大小;
(Ⅲ)求二面角A-EB-C的大小.

manfen5.com 满分网 查看答案
已知向量a=(sin(manfen5.com 满分网+x),manfen5.com 满分网cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=manfen5.com 满分网,求角A的值.
查看答案
在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:manfen5.com 满分网由此得manfen5.com 满分网

manfen5.com 满分网
相加,得manfen5.com 满分网
类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,

其结果为     查看答案
给出以下几个命题,正确的是   
①函数manfen5.com 满分网对称中心是manfen5.com 满分网
②已知Sn是等差数列{an},n∈N*的前n项和,若S7>S5,则S9>S3
③函数f(x)=x|x|+px+q(x∈R)为奇函数的充要条件是q=0;
④已知a,b,m均是正数,且a<b,则manfen5.com 满分网查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.