已知数列{a
n}中,a
1=3,a
2=5,其前n项和S
n满足S
n+S
n-2=2S
n-1+2
n-1(n≥3).令
.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)若f(x)=2
x-1,求证:
(n≥1);
(Ⅲ)令
(a>0),求同时满足下列两个条件的所有a的值:①对于任意正整数n,都有
;②对于任意的
,均存在n
∈N
*,使得n≥n
时,T
n>m.
考点分析:
相关试题推荐
如图,已知曲线
与抛物线c
2:x
2=2py(p>0)的交点分别为A、B,曲线c
1和抛物线c
2在点A处的切线分别为l
1、l
2,且l
1、l
2的斜率分别为k
1、k
2.
(Ⅰ)当
为定值时,求证k
1•k
2为定值(与p无关),并求出这个定值;
(Ⅱ)若直线l
2与y轴的交点为D(0,-2),当a
2+b
2取得最小值9时,求曲线c
1和c
2的方程.
查看答案
已知函数
.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(e
t+2)x
2+e
tx+e
t-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有
.
查看答案
如图,已知正三棱柱ABC-A
1B
1C
1各棱长都为a,P为棱A
1B上的动点.
(Ⅰ)试确定A
1P:PB的值,使得PC⊥AB;
(Ⅱ)若A
1P:PB=2:3,求二面角P-AC-B的大小;
(Ⅲ)在(Ⅱ)的条件下,求点C
1到面PAC的距离.
查看答案
在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答这道题对的概率是
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
.
(Ⅰ)求乙、丙两人各自回答这道题对的概率;
(Ⅱ)用ξ表示回答该题对的人数,求ξ的分布列和数学期望Eξ.
查看答案
如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为
,|OB|=2,设
.
(Ⅰ)用θ表示点B的坐标及|OA|;
(Ⅱ)若
,求
的值.
查看答案